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Abstract. We estimate the Lebesgue constants for the weak thresholding greedy
algorithm in a Banach space relative to a biorthogonal system. The estimates
involve the weakness (relaxation) parameter of the algorithm, as well as properties
of the basis, such as its quasi-greedy constant and democracy function.

1. Introduction

In this short note, we calculate the Lebesgue of the t-greedy, and the Cheby-
shev t-greedy, algorithms in Banach spaces (thus measuring the efficiency of these
approximation methods, in the worst case).

Throughout this paper, X is a separable infinite dimensional Banach space. A
family (ei, e

∗
i )∈∈N ⊂ X ×X∗ is called a bounded biorthogonal system if:

(1) X = span [ei : i ∈ N].
(2) e∗i (ej) = 1 if i = j, e∗i (ej) = 0 otherwise.
(3) 0 < infi min{‖ei‖, ‖e∗i ‖} ≤ supi max{‖ei‖, ‖e∗i ‖} <∞.

For brevity, we refer to (ei) as a basis. Note that Condition (3) is referred to as (ei)
being seminormalized. In this note, only seminormalized bases are considered.

It is easy to see that, for any x ∈ X, limi e
∗
i (x) = 0, and supi |e∗i (x)| > 0, unless

x = 0.
Bases as above are quite common. It is known [6, Theorem 1.27] that, for any c > 1

any separable Banach space has a bounded biorthogonal system (a Markushevitch
basis) with 1 ≤ ‖ei‖, ‖e∗i ‖ ≤ c, and X∗ = spanw∗

[e∗i : i ∈ N].
To consider the problem of approximating x ∈ X by finite linear combinations of

ei’s, introduce some notation. For x ∈ X set suppx = {i ∈ N : e∗i (x) 6= 0}. For finite
A ⊂ N, set PAx =

∑
i∈A e

∗
i (x)ei. If Ac = N\A is finite, write PAx = x− PAcx.

The best n-term approximation for x ∈ X is defined as

σn(x) = inf
| supp y|≤n

‖x− y‖,

while the best n-term coordinate approximation is

σ̃n(x) = inf
|B|≤n

‖x− PBx‖.
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It is easy to see that limn σn(x) = 0, and

σn(x) = inf
| supp y|=n

‖x− y‖ and σ̃n(x) = inf
|B|=n

‖x− PBx‖

(the second equality is due to the fact that limi e
∗
i (x) = 0).

We also consider the n term residual approximation

σ̂n(x) = ‖x− P[1,n]x‖.

We say that (ei) is a Schauder basis if limn σ̂n(x) = 0 for every x ∈ X (in this case,
also limn σ̃n(x) = 0). Many commonly used bases (such as the Haar basis or the
trigonometric basis in Lp, for 1 < p <∞) are, in fact, Schauder bases.

Note that calculating σn(x) and σ̃n(x) is next to impossible, since all coordinates
of x are in play. Therefore, one can naively look for a good n-term approximant of
x by considering the n largest (or “nearly largest”) coefficients. This is done using
the weak greedy algorithm. To define this algorithm, fix the relaxation parameter
t ∈ (0, 1]. Consider a non-zero x ∈ X. A set A ⊂ N is called t-greedy for x if
infi∈A |e∗i (x)| ≥ t supi/∈A |e∗i (x)| (by the above, A is finite). Suppose ρ = ρx : N→ N
is a t-greedy ordering – that is, {ρ(n) : n ∈ N} is t-greedy for x, for every n. In
general, a t-greedy ordering is not unique. Note that {ρ(n) : n ∈ N} = Sx := {n ∈
N : e∗n(x) 6= 0} if the set Sx is infinite. On the other hand, if |Sx| = m < ∞, then
{ρ(1), . . . , ρ(m)} = Sx while ρ(i) /∈ Sx for i > m.

An n-term t-greedy approximant of x is defined as Gt
n(X) = PAnx, where An =

{ρ(1), . . . , ρ(n)}, and ρ is a t-greedy ordering for x. We define an n-term Chebyshev
t-greedy approximant CGt

n(x) as y ∈ span [ei : i ∈ An] so that ‖x − y‖ is minimal.
We stress that these approximants are not unique, and a fortiori, the operators
x 7→ Gt

n(x) and x 7→ CGt
n(x) are not linear.

For more information on greedy approximation algorithms, we refer the reader to
the survey papers [9] and [14], as well as to the recent monograph [10].

When t = 1, we omit it, and use the terms “greedy set”, (“Chebyshev”) “greedy
approximant”, as well as notation Gn(x) and CGn(x). A basis (ei) is called quasi-
greedy if its quasi-greedy constant is finite:

K = sup
‖x‖=1

sup
n∈N
‖Gn(x)‖ <∞.

In [13] it was shown that a basis is quasi-greedy if and only if limnGn(x) = x for
any x ∈ X, and any (equivalently, some) choice of the sequence Gn(x). By [7], for
a quasi-greedy basis we also have limnG

t
n(x) = x for any x ∈ X, and any choice of

the sequence Gt
n(x).

The goal of this paper is to estimate the efficiency of the t-greedy and t-Chebyshev
greedy methods (in the worst case), by comparing ‖x−Gt

n(x)‖ and ‖x−CGt
n(x)‖

with the best n-term approximation σn(x), and similar quantities. This is done
through estimating the Lebesgue constants and its relatives:

The Lebesgue constant L(n, t) = sup
x∈X,σn(x)6=0

‖x−Gt
n(x)‖

σn(x)
.

The Chebyshevian Lebesgue constant Lch(n, t) = sup
x∈X,σn(x)6=0

‖x−CGt
n(x)‖

σn(x)
.
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The residual Lebesgue constant Lre(n, t) = sup
x∈X,σ̂n(x)6=0

‖x−Gt
n(x)‖

σ̂n(x)
.

We stress that the suprema in the above inequalities are taken over all x ∈ X, and all
possible realizations of the (Chebyshev) weakly greedy algorithm. A basis is called
greedy if supn L(n, 1) <∞, and partially greedy if supn Lre(n, 1) <∞

To estimate the Lebesgue constants, we quantify some properties of (ei). We
use the left and right democracy functions φl(k) = inf |A|=k ‖

∑
i∈A ai‖ and φr(k) =

sup|A|=k ‖
∑

i∈A ai‖ (sometimes, φr is also referred to as the fundamental function).
We define the democracy parameter

µ(n) = max
k≤n

φr(k)

φl(k)
= sup
|A|=|B|≤n

‖
∑

i∈A ei‖
‖
∑

i∈B ei‖
.

Following [8], define the disjoint democracy parameter

µd(n) = sup
|A|=|B|≤n,A∩B=∅

‖
∑

i∈A ei‖
‖
∑

i∈B ei‖
.

Clearly, µd(n) ≤ µ(n). By [4, Lemma 3.2], µ(n) ≤ 3Kµd(n). Related to the
democracy parameter of a basis (ei) is its conservative parameter :

c(n) = sup
{‖∑i∈A ei‖
‖
∑

i∈B ei‖
: maxA ≤ n < minB, |A| = |B|

}
.

The norms of coordinate projections in a basis (ei) are quantified by the uncondition-
ality parameter and complemented unconditionality parameter : k(n) = sup|A|≤n ‖PA‖,
resp. kc(n) = sup|A|≤n ‖I − PA‖ (clearly |k(n)− kc(n)| ≤ 1).

The investigation of Lebesgue constants dates back to the earliest works on greedy
algorithms, see e.g. [8] (there, for instance, the Lebesgue constant of the Haar basis
in the BMO, and the dyadic BMO, were computed). More recently, in [11, 12], the
Lebesgue constants for tensor product bases in Lp-spaces (in particular, for the multi-
Haar basis) were calculated. The Lebesgue constants for the trigonometric basis Lp
(which is not quasi-greedy) are also known, see e.g. [9, Section 1.7]. The recent paper
[3] estimates the Lebesgue constants for bases in Lp spaces with specific properties
(such as being uniformly bounded). Lebesgue constants for redundant dictionaries
are studied in [10, Section 2.6].

The paper is structured as follows: in Section 2, we gather some preliminary
facts about quasi-greedy bases. In Section 3, we estimate L(n, t) in terms of K,
µd(n), k(n), and t. For t = 1, related results were obtained in [4]. However, the
Lebesgue constant was not explicitly calculated there. Retracing the computations,
one obtains worse constants than those given by Theorem 3.1. Corollary 3.5 gives
an upper estimate for the Lebesgue constant of quasi-greedy bases in Hilbert spaces,
by combining Theorem 3.1 with the recent results of Garrigos and Wojtaszczyk [5].
Further, we estimate the Lebesgue constant for general (not necessarily quasi-greedy)
systems in Proposition 3.6.

In Section 4, we estimate Lch(n, t). The estimates involve only t, K, and µd(n).
Finally, in Section 5, we provide upper and lower bounds for Lre(n, t), involving t,
K, and k(n). The main results are given in Theorems 4.1 and 5.1, respectively.
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Most of the work in this paper is done in the real case. In Section 6, we indicate
that the complex versions of the results of this paper also hold, albeit perhaps with
different numerical constants.

2. Preliminary results

In this section we prove two lemmas, which will be needed throughout the paper,
and may be of interest in their own right. The first lemma sharpens some results
from [7, Section 2].

Lemma 2.1. Suppose (ei) ⊂ X is a basis with a quasi-greedy constant K, and a set
A is t-greedy for x ∈ X. Then ‖PAx‖ ≤ (1 + 4t−1K)K‖x‖.

Proof. For the sake of brevity, set ai = e∗i (x). Let M = mini∈A |ai|, then |ai| ≤
t−1M for i /∈ A. Define B = {i : |ai| ≥ t−1M} and C = {i : |ai| ≥ M}. Then
B ⊂ A ⊂ C, and PAx = PBx+ PA\Bx. By the definition of K, ‖PBx‖ ≤ K‖x‖, and
‖PCx‖ ≤ K‖x‖. Write PCx =

∑
i∈C aiei. The proof of [2, Lemma 2.2] shows that

M‖
∑

i∈C e
′
i‖ ≤ 2K‖x‖, where

e′i =

{
sign (ai)ei i ∈ C
ei otherwise

.

Note that the basis (e′i) has the same quasi-greedy constant as (ei). For i ∈ C, set

bi =

{
|ai| i ∈ A\B
0 otherwise

.

For any i, |bi| ≤ t−1M , hence, by [2, Lemma 2.1],

‖
∑
i∈A\B

aiei‖ = ‖
∑
i∈C

bie
′
i‖ ≤ 2t−1MK‖

∑
i∈C

e′i‖ ≤ 4t−1MK2‖x‖.

By the triangle inequality, ‖PAx‖ ≤ ‖PBx‖+ ‖PA\Bx‖. �

Lemma 2.2. Suppose (ei) is a K-quasi-greedy basis in X. Consider x ∈ X, and let
ai = e∗i (x), for i ∈ N. Suppose a finite set A ⊂ N satisfies mini∈A |ai| ≥ M . Then
M‖

∑
i∈A sign (ai)ei‖ ≤ (1+3K)K‖x‖. Furthermore, M‖

∑
i∈A ei‖ ≤ 2(1+3K)K‖x‖.

Here and throughout the paper, we shall use the function

fM : R→ R : t 7→

 −M t < −M
t −M ≤ t ≤M
M t > M

.

Abusing the notation slightly, we shall write

fM (x) = x−
∑
i

(
e∗i (x)− fM

(
e∗i (x)

))
ei.

The sum above converges, since the set {i ∈ N : |e∗i (x)| > M} is finite. Moreover,
fM (x) is the only element y ∈ X with the property that, for every i, e∗i (y) =
fM (e∗i (x)). By [1], ‖fM (x)‖ ≤ (1 + 3K)‖x‖.
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Proof. Let y = fM (x). Then A is a greedy set for y, and PAy = M
∑

i∈A sign (ai)ei.
Therefore, M‖

∑
i∈A sign (ai)ei‖ = ‖PAy‖ ≤ K‖y‖. This proves the first statement

of our lemma. To establish the “moreover” part, let A+ = {i ∈ A : sign (ai) = 1},
and A− = {i ∈ A : sign (ai) = −1}. By the above, M‖

∑
i∈A+

sign (ai)ei‖ ≤
(1 + 3K)K‖x‖, and the same holds for A−. Complete the proof using the triangle
inequality. �

We close this section with a brief discussion about the values of µd(n), k(n), and
c(n). It was shown in [1] and [4] that, for a K-quasi-greedy basis, k(n) ≤ C log(en),
where the constant C depends on the particular basis. For bases in Lp spaces,
sharper estimates were obtained in [5]. It is easy to see that c(n) ≤ µd(n) ≤ Cn,
where C depends on a basis. These estimates are optimal: indeed, an appropriate
enumeration of the canonical (normalized and 1-unconditional) basis in c0⊕2 `1 gives
c(n) ≥ cn.

3. The Lebesgue constant

In this section, we use some of the techniques of [4] to estimate the Lebesgue
constants L(n, t).

Theorem 3.1. For any K-quasi-greedy basis,

max
{
k(n)− 1, t−1µd(n)

}
≤ L(n, t) ≤ 1 + 2k(n) + 4t−1(1 + 3K)K2µd(n).

The proof of the theorem relies on several lemmas, whose proofs closely resemble
those given in [4] (Lemma 3.4 yields better upper estimates).

Lemma 3.2. For any K-quasi-greedy basis, L(n, t) ≥ t−1µd(n).

Proof. Fix n ∈ N and ε > 0. Find A,B ⊂ N, so that A ∩B = ∅, |A| = |B| = k ≤ n,
and

‖
∑
i∈A

ei‖ ≥ (µd(n)− ε)‖
∑
i∈B

ei‖.

Pick a set C, disjoint from A and B, so that |C| = n− k. Consider

x = (t+ ε)
∑

i∈B∪C
ei +

∑
i∈A

ei.

Then (t + ε)
∑

i∈B∪C ei is a t-greedy approximant of x, for which ‖x − Gt
n(x)‖ =

‖
∑

i∈A ei‖. However, |A ∪ C| = n, hence

σn(x) ≤ σ̃n(x) ≤ ‖x− PA∪Cx‖ = (t+ ε)‖
∑
i∈B

ei‖.

Thus,

L(n, t) ≥ ‖x−Gt
n(x)‖

σn(x)
= (t+ ε)−1

‖
∑

i∈A ei‖
‖
∑

i∈B ei‖
≥ µd(n)− ε

t+ ε
.

As ε can be arbitrarily small, the desired estimate follows. �

Lemma 3.3. For any K-quasi-greedy basis, L(n, t) ≥ kc(n).
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Proof. Fix n ∈ N and ε > 0, and find a finitely supported x ∈ X of norm 1, so that
‖PAcx‖ > kc(n) − ε for some set A of cardinality not exceeding n. Find C ⊂ Ac

so that C ∩ supp(x) = ∅, and |C| = n − |A|. Pick c > supi |e∗i (x)|, and consider
y = x− PAx+ 2c

∑
i∈A∪C ei. Then |A ∪ C| = n, and

min
i∈A∪C

|e∗i (y)| > c > min
i/∈A∪C

|e∗i (y)|.

Thus, for any t, we can have Gt
n(y) = PA∪Cy = PAcx, hence ‖y−Gt

ny‖ = ‖PAcx‖ >
kc(n)− ε. However, z = 2c

∑
i∈A∪C ei − PAx is supported on A ∪ C, hence σn(y) ≤

‖y − z‖ = ‖x‖ = 1, yielding the desired estimate. �

Lemma 3.4. For any K-quasi-greedy basis, L(n, t) ≤ k(n) + kc(n) + 4t−1(1 +
3K)K2µd(n).

Proof. For x ∈ X, let ai = e∗i (x), and fix ε > 0. Suppose A ⊂ N is a t-greedy set
for x, of cardinality n. Find z ∈ X, supported on a set B of cardinality n, so that
‖x − z‖ < σn(x) + ε. Let M = supi/∈A |ai|, then |ai| ≥ tM whenever i ∈ A. By the
triangle inequality,

‖x− PAx‖ ≤ ‖x− PBx‖+ ‖PA\Bx‖+ ‖PB\Ax‖.

We have

‖PA\Bx‖ = ‖PA\B(x− z)‖ ≤ k(n)‖x− z‖,
and

‖x− PBx‖ = ‖x− PBx+ z − PBz‖ = ‖(1− PB)(x− z)‖ ≤ kc(n)‖x− z‖.

It remains to estimate the third summand, in the non-trivial case of |B\A| = k > 0.
For i ∈ B\A, |ai| ≤M , hence by [2],

‖PB\Ax‖ = ‖
∑
i∈B\A

aiei‖ ≤ 2MK‖
∑
i∈B\A

ei‖.

By Lemma 2.2, M ≤ t−12(1 + 3K)K‖
∑

i∈A\B ei‖−1‖x− z‖. Thus,

‖PB\Ax‖ ≤ 2MK‖
∑
i∈B\A

ei‖

≤ 4t−1(1 + 3K)K2
‖
∑

i∈B\A ei‖
‖
∑

i∈A\B ei‖
‖x− z‖ ≤ 4t−1(1 + 3K)K2µd(n)‖x− z‖.

As ‖x− z‖ can be arbitrarily close to σn(x), we are done. �

We use Theorem 3.1 to estimate the Lebesgue constant for quasi-greedy bases in
a Hilbert spaces. Recall that a basis (ei) is called hilbertian (besselian) if there exists
a constant c so that, for every finite sequence of scalars (αi). we have

∑
i |αi|2 ≥

c‖
∑

i αiei‖2 (resp.
∑

i |αi|2 ≤ c‖
∑

i αiei‖2).

Corollary 3.5. For any K-quasi-greedy basis in a Hilbert space, there exists α ∈
(0, 1) and C > 0 so that, for any n ∈ N and t ∈ (0, 1), L(n, t) ≤ C(t−1 +(log(en))α).
If, moreover, the basis is either besselian or hilbertian, then there exists α ∈ (0, 1/2)
with the above property.
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Proof. By [5], there exists a constant c1, and α as above, so that k(n) ≤ c1(log(en))α.
By [13], µ(n) ≤ c2, for some constant c2. To finish the proof, apply Theorem 3.1. �

We conclude this section with an estimate for L(n, t) for bounded Markushevitch
bases which are not necessarily quasi-greedy. Let 1 ≤ p ≤ q ≤ ∞. We say that (ei)
satisfies weak upper p- and lower q-estimates if there exists K > 0 such that for all
x ∈ X,

1

K
‖(e∗i (x))‖q,∞ ≤ ‖x‖ ≤ K‖(e∗i (x))‖p,1,

where, letting (a∗n) denote the decreasing rearrangement of the sequence (|an|),

‖(an)‖q,∞ := sup
n≥1

n1/qa∗n

and

‖(an)‖p,1 :=
∑
n≥1

n1/p−1a∗n

are the usual Lorentz sequence norms. Note that p = 1 and q = ∞ are just the `1
and c0 norms, respectively.

The following result slightly extends [12, Th. 5] by incorporating the weakness pa-
rameter t and replacing upper `p-and lower `q-estimates by weaker Lorentz sequence
space estimates.

Proposition 3.6. Suppose (ei) satisfies weak upper p− and lower q-estimates. Then
there exists D := D(p, q,K) such that

L(n, t) ≤

{
Dn1/p−1/q/t, p 6= q

(D log n)/t, p = q.

Proof. First suppose q < p. Let x ∈ X and set ai := e∗i (x). Let A be a t-greedy set
for x, with |A| = n, and let Gt

n(x) :=
∑

i∈A aiei. Given ε > 0, choose B ⊂ N, with
|B| = n, such that ‖x−

∑
i∈B biei‖ ≤ σn(x) + ε. For convenience, set bi = 0 if i /∈ B.

Set C = C(p, q) := 1 + (q − p)/pq.

‖x−Gt
n(x)‖ ≤ ‖x−

∑
i∈B

biei‖+ ‖
∑
i∈B

biei −
∑
i∈A

aiei‖

≤ σn(x) + ε+ ‖
∑
i∈B

biei −
∑
i∈A

aiei‖.
(3.1)

Then

‖
∑
i∈A

(bi − ai)ei‖ ≤ K‖(bi − ai)i∈A‖p,1

≤ KCn1/p−1/q‖(bi − ai)i∈A‖q,∞
≤ K2Cn1/p−1/q‖x−

∑
i∈B

biei‖

≤ K2Cn1/p−1/q(σn(x) + ε).

(3.2)
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Similarly,

‖
∑
i∈B\A

biei‖ ≤ ‖
∑
i∈B\A

(bi − ai)ei‖+ ‖
∑
i∈B\A

aiei‖

≤ K2Cn1/p−1/q(σn(x) + ε) + ‖
∑
i∈B\A

aiei‖
(3.3)

Finally, since A is a t-greedy set for x and |A \B| = |B \A|,

‖
∑
i∈B\A

aiei‖ ≤ K2Cn1/p−1/q‖(ai)i∈B\A‖q,∞

≤ K2Cn1/p−1/q

t
‖(ai)i∈A\B‖q,∞

≤ K3Cn1/p−1/q

t
‖x−

∑
i∈B

biei‖

≤ K3Cn1/p−1/q

t
(σn(x) + ε).

(3.4)

Since ε > 0 is arbitrary, combining (3.1)-(3.4) gives

‖x−Gt
n(x)‖ ≤

(
1 + 2K2C +

K3C

t

)
n1/p−1/qσn(x),

and hence L(n, t) ≤
(

1 + 2K2C + K3C
t

)
n1/p−1/q. The case p = q is similar except

Cn1/p−1/q is replaced by 1 + log n throughout. �

Since every bounded Markushevitch basis satisfies a lower∞-estimate, we get the
following corollary.

Corollary 3.7. Let 1 ≤ p < ∞ and let (ei) be a bounded Markushevitch basis such

that φr(k) ≤ Ck1/p for some C > 0. Then L(n, t) ≤ Cn1/p/t.

Proof. By the triangle inequality ‖
∑

i∈A±ei‖ ≤ 2Cn1/p for all A ⊂ N with |A| = n.
By a standard Abel summation calculation, we get ‖

∑
i∈A aiei‖ ≤ C‖(ai)i∈A‖p,1 for

all scalars (ai) and finite A ⊂ N. It follows easily that (ei) satisfies weak upper p-
and lower ∞-estimates, so we can apply Proposition 3.6 to get the result. �

4. The Chebyshevian Lebesgue constant

Theorem 4.1. For any K-quasi-greedy basis,

µd(n)

2tK
≤ Lch(n, t) ≤ 20K3µd(n)

t
.

As a corollary, we recover a result from [1].

Corollary 4.2. Any almost greedy basis is semi-greedy.

Recall that (ei) is almost greedy if there exists a constant C so that ‖x−Gn(x)‖ ≤
Cσ̃n(x) for any n ∈ N and x ∈ X, and semi-greedy if there exists a constant C so
that ‖x−CGn(x)‖ ≤ Cσn(x), for any n and x.



LEBESGUE CONSTANTS 9

Proof. By [1], a basis is almost greedy if and only if it is quasi-greedy and democratic
(that is, supnµ(n) < ∞). In this case supn Lch(n, 1) < ∞, hence the basis is semi-
greedy. �

Proof of the upper estimate in Theorem 4.1. For x ∈ X let ai = e∗i (x), and fix ε > 0.
Suppose a set A ⊂ N of cardinality n is t-greedy for x. Let M = maxi/∈A |ai|, then
mini∈A |ai| ≥ tM . We have to show that there exists w ∈ X so that supp(x−w) ⊂ A,
and ‖w‖ ≺ 20t−1K2µd(n)(σn(x) + ε).

Pick z =
∑

i∈B biei, where |B| ≤ n, and ‖x− z‖ < σn(x) + ε. Set y = x− z and

yi = e∗i (y) =

{
ai − bi i ∈ B
ai i /∈ B .

We claim that w = PAfM (y) + PAcx has the desired properties. Indeed, x − w
is supported on A. To estimate ‖w‖, note that, for i /∈ B, yi = ai. For i /∈ A,
fM (ai) = ai, hence, for i /∈ A ∪B, ai = fM (yi). Thus,

(4.1) w = fM (y) +
∑
i∈B\A

(ai − fM (yi))ei.

We use [1, Proposition 3.1] to estimate on the first summand:

(4.2) ‖fM (y)‖ ≤ (1 + 3K)‖y‖ = (1 + 3K)‖x− z‖.

To handle the second summand, set k = |B\A|. For i ∈ B\A, |ai| ≤ M , hence
|ai − fM (yi)| ≤ 2M . By [1, (2.5)],

(4.3) ‖
∑
i∈B\A

(ai − fM (yi))ei‖ ≤ 2MK‖
∑
i∈B\A

ei‖.

On the other hand, for i ∈ A\B, ai = yi, and |ai| ≥ tM , hence by Lemma 2.2,

tM‖
∑
i∈A\B

ei‖ ≤ 2K(1 + 3K)‖y‖,

hence

M ≤ t−1 2K(1 + 3K)‖x− z‖
‖
∑

i∈A\B ei‖
.

Plugging this into (4.3), we get:

‖
∑
i∈B\A

(ai − fM (yi))ei‖ ≤ 4
‖
∑

i∈B\A ei‖
‖
∑

i∈A\B ei‖
t−1K2(1 + 3K)‖x− z‖

≤ 4µd(n)t−1K2(1 + 3K)‖x− z‖.

Together with (4.2), we obtain:

‖w‖ ≤
(
1 +

4µd(n)K2

t

)
(1 + 3K)‖x− z‖ ≤ 20K3µd(n)

t
(σn(x) + ε).

As ε can be arbitrarily close to 0, we are done. �
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Proof of the lower estimate in Theorem 4.1. Fix n ∈ N and ε > 0. Find A,B ⊂ N,
so that A ∩B = ∅, |A| = |B| = k ≤ n, and

‖
∑
i∈A

ei‖ ≥ (µd(n)− ε)‖
∑
i∈B

ei‖.

Pick a set C, disjoint from A and B, so that |C| = n− k. Consider

x = (t+ ε)
∑

i∈B∪C
ei +

∑
i∈A

ei.

We can find a t-greedy approximant CGt
n(x) supported on B ∪ C, and then y =

x − CGt
n(x) =

∑
i∈A ei +

∑
i∈B∪C yiei. Let D = {i ∈ B ∪ C : |yi| ≥ 1}. Both∑

i∈A ei +
∑

i∈D yiei and
∑

i∈D yiei are greedy approximants of y, hence

max
{
‖
∑
i∈A

ei +
∑
i∈D

yiei‖, ‖
∑
i∈D

yiei‖
}
≤ K‖y‖.

By the triangle inequality, ‖
∑

i∈A ei‖ ≤ 2K‖y‖. Thus,

‖x−CGt
n(x)‖ ≥ 1

2K
‖
∑
i∈A

ei‖ ≥
µd(n)− ε
2(t+ ε)K

‖(t+ ε)
∑
i∈B

ei‖ =
µd(n)− ε
2(t+ ε)K

‖x− PA∪Cx‖

≥ µd(n)− ε
2(t+ ε)K

σ̃n(x) ≥ µd(n)− ε
2(t+ ε)K

σn(x)

(since |A ∪ C| = n). As ε can be arbitrarily small, we are done. �

5. The residual Lebesgue constant

Theorem 5.1. For any K-quasi-greedy basis,

t−1c(n) ≤ Lre(n, t) ≤ 1 + 5t−1K2 + 40t−1K5c(n).

Proof of the upper estimate in Theorem 5.1. For x ∈ X set ai = e∗i (x). Suppose A
is a t-greedy subset of N, of cardinality n, and set B = [1, n]. Let M = mini∈A |ai|,
then |ai| ≤ t−1M for i /∈ A. By the triangle inequality,

(5.1) ‖x−Gt
n(x)‖ = ‖PAcx‖ ≤ ‖x− PBx‖+ ‖PA\Bx‖+ ‖PB\Ax‖.

Let y = PBcx, then ‖y‖ = σ̂n(x). The set A\B is t-greedy for y, hence, by Lemma
2.1,

‖PA\Bx‖ = ‖PA\By‖ ≤ 5t−1K2‖y‖.
Furthermore,

M‖
∑
i∈A\B

ei‖ ≤ 4K2‖PA\Bx‖ ≤ 20t−1K4‖y‖.

Now

‖PB\Ax‖ ≤ 2t−1MK‖
∑
i∈A\B

ei‖ ≤ 2t−1MKc(n)‖
∑
i∈B\A

ei‖ ≤ 40t−1K5c(n)‖y‖.

Plug the above results into (5.1) to obtain the upper estimate for Lre(n, t). �
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Proof of the lower estimate in Theorem 5.1. Fix ε > 0, and find sets A ⊂ [1, n] and
B ⊂ [n+ 1,∞) so that |A| = k = |B|, and

c(n)− ε <
‖
∑

i∈A ei‖
‖
∑

i∈B ei‖
.

Consider x =
∑n

i=1 ei + (t + ε)
∑

i∈B ei. Then B ∪ ([1, n]\A) is a t-greedy set for
x, hence one can run the t-greedy algorithm in such a way that ‖x − Gt

n(x)‖ =
‖
∑

i∈A ei‖. On the other hand, σ̂n(x) = ‖P[n+1,∞)x‖ = (t+ ε)‖
∑

i∈B ei‖. The lower
estimate follows from comparing these two quantities. �

6. Appendix: the complex case

The results above are stated for the real case. The complex case is similar, but
the constants are different. As customary, we set

sign z =

{
z/|z| z 6= 0
0 z = 0

.

The following result is present (implicitly or explicitly) in [4, Appendix]:

Lemma 6.1. Suppose (ei) is a K-quasi-greedy basis in a Banach space X.

(1) If A is a finite set, then ‖
∑

i∈A aiei‖ ≤ 2Kmaxi |ai|‖
∑

i∈A ei‖.
(2) Suppose A is a greedy set for x ∈ X. Let M = mini∈A |e∗i (x)|. Then

M

8
√

2K2
‖
∑
i∈A

ei‖ ≤
M

2K
‖
∑
i∈A

sign
(
e∗i (x)

)
ei‖ ≤ ‖x‖.

For M > 0, define

fM : Z→ Z : z 7→
{

sign (z)M |z| > M
z |z| ≤M .

For x ∈ X, we set fM (x) = x −
∑

i

(
e∗i (x) − fM (e∗i (x)))ei (the sum converges, and

e∗i (fM (x)) = fM (e∗i (x)) for every i). As in [1, Proposition 3.1], one can prove:

Lemma 6.2. In the above notation, ‖fM (x)‖ ≤ (1 + 3K)‖x‖.

As in Section 2, we obtain:

Lemma 6.3. Suppose (ei) ⊂ X is a basis with a quasi-greedy constant K, and a set
A is t-greedy for x ∈ X. Then ‖PAx‖ ≤ (1 + 8

√
2t−1K)K‖x‖.

Lemma 6.4. Suppose (ei) is a K-quasi-greedy basis in X. Consider x ∈ X, and let
ai = e∗i (x), for i ∈ N. Suppose a finite set A ⊂ N satisfies mini∈A |ai| ≥ M . Then
M‖

∑
i∈A sign (ai)ei‖ ≤ (1+3K)K‖x‖. Furthermore, M‖

∑
i∈A ei‖ ≤ 4(1+3K)K‖x‖.

Proof. Use the notation y = fM (x), ωi = sign (ai), and e′i = sign (ai)ei. Then A is a
greedy set for y, and PAy = M

∑
i∈A e

′
i. Therefore, M‖

∑
i∈A e

′
i‖ = ‖PAy‖ ≤ K‖y‖.

This proves the first statement of our lemma. Moreover any B ⊂ A is a greedy set
for y, hence for any such B, M‖

∑
i∈B e

′
i‖ = ‖PBy‖ ≤ K‖y‖. Let S be the absolute

convex hull of the elements
∑

i∈B e
′
i – that is,

S =
{ ∑
B⊂A

tB
∑
i∈B

e′i :
∑
B⊂A
|tB| ≤ 1

}
.
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We claim that
∑

i∈A ei =
∑

i∈A ωie
′
i ∈ 4S. Otherwise, by Hahn-Banach Separation

Theorem, there exists a sequence (bi)i∈A ∈ C|A| so that |
∑

i∈B bi| < 1 whenever B ⊂
A, yet |

∑
i∈A ωibi| > 4. Let B+ = {i ∈ A : <bi ≥ 0} and B− = {i ∈ A : <bi < 0}.∑

i∈B+

<bi ≤
∣∣ ∑
i∈B+

bi
∣∣ ≤ 1,

and similarly,
∑

i∈B−
(−<bi) ≤ 1. Therefore,∑
i∈A
|<bi| =

∑
i∈B+

|<bi|+
∑
i∈B−

|<bi| ≤ 2.

The same way, we show that
∑

i∈A |=bi| ≤ 2. Consequently,∣∣∑
i∈A

ωibi
∣∣ ≤∑

i∈A
|bi| ≤

∑
i∈A

(
|<|bi|+ |=bi|

)
≤ 4,

yielding a contradiction. �

These results allow us to emulate the proofs of previous sections, and to estimate
the Lebesgue constants:

Theorem 6.5. Suppose (ei) is a K-quasi-greedy basis in a complex Banach space X.
Then:

(1)

max
{
k(n)− 1, t−1µd(n)

}
≤ L(n, t) ≤ 1 + 2k(n) + 16

√
2t−1(1 + 3K)K2µd(n).

(2)

µd(n)

2tK
≤ Lch(n, t) ≤ 100K3µd(n)

t
.

(3)

t−1c(n) ≤ Lre(n, t) ≤ 1 + 9
√

2t−1K2 + 900t−1K5c(n).
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