The Least Spanning Area of a Knot and the Optimal Bounding Chain Problem

Nathan M. Dunfield
University of Illinois, Mathematics

Anil N. Hirani
University of Illinois, Computer Science

SoCG 2011, Paris
The Least Spanning Area of a Knot and the Optimal Bounding Chain Problem

Nathan M. Dunfield
University of Illinois, Mathematics

Anil N. Hirani
University of Illinois, Computer Science

SoCG 2011, Paris

Knot in \mathbb{R}^3: Smooth embedding of S^1 in \mathbb{R}^3.

Spanning surface: Any knot in \mathbb{R}^3 is the boundary of a smooth orientable embedded surface S.

Knot Genus: What is the least genus of such an S?

Least Spanning Area: What is the least area of such an S?

Both questions are decidable [Haken 1960, Sullivan 1990].
The Least Spanning Area of a Knot and the Optimal Bounding Chain Problem

Nathan M. Dunfield
University of Illinois, Mathematics

Anil N. Hirani
University of Illinois, Computer Science

Knot in \mathbb{R}^3: Smooth embedding of S^1 in \mathbb{R}^3.

Spanning surface: Any knot in \mathbb{R}^3 is the boundary of a smooth orientable embedded surface S.

Knot Genus: What is the least genus of such an S?

Least Spanning Area: What is the least area of such an S?

Both questions are decidable [Haken 1960, Sullivan 1990].
Knot in \mathbb{R}^3: Smooth embedding of S^1 in \mathbb{R}^3.

Spanning surface: Any knot in \mathbb{R}^3 is the boundary of a smooth orientable embedded surface S.

Knot Genus: What is the least genus of such an S?

Least Spanning Area: What is the least area of such an S?

Both questions are decidable [Haken 1960, Sullivan 1990].

More generally, consider a closed orientable 3-manifold Y containing a knot K.

- Y is given as a simplicial complex T with areas (in \mathbb{N}) assigned to each 2-simplex.
- K is a loop of edges in T.
- Consider spanning surfaces which are “made out of” 2-simplices of T.

Thm (D-H) When $H_2(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.

 Conj When $H_2(Y;\mathbb{Z}) = 0$, Knot Genus can be solved in polynomial time.
More generally, consider a closed orientable 3-manifold Y containing a knot K.

- Y is given as a simplicial complex T with areas (in \mathbb{N}) assigned to each 2-simplex.
- K is a loop of edges in T.
- Consider spanning surfaces which are “made out of” 2-simplices of T.

Agol-Hass-Thurston (2002) For general Y the Knot Genus and Least Spanning Area problems are NP-hard.

Thm (D-H) When $H_2(Y; \mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.

Conj When $H_2(Y; \mathbb{Z}) = 0$, Knot Genus can be solved in polynomial time.
Algorithm uses linear programming.

Thm (D-H) When $H_2(Y;\mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.

Approach:

1. Consider the related Optimal Bounding Chain Problem, where S is a union of 2-simplices of \mathcal{T} but perhaps not a surface.

2. Reduce to an instance of the Optimal Homologous Chain Problem that can be solved in polynomial time by [Dey-H-Krishnamoorthy 2010].

3. Desingularize the result using two topological tools.
Thm (D-H) When $H_2(Y; \mathbb{Z}) = 0$, e.g. $Y = S^3$, Least Spanning Area can be solved in polynomial time.

Approach:

1. Consider the related Optimal Bounding Chain Problem, where S is a union of 2-simplices of \mathcal{T} but perhaps not a surface.
2. Reduce to an instance of the Optimal Homologous Chain Problem that can be solved in polynomial time by [Dey-H-Krishnamoorthy 2010].
3. Desingularize the result using two topological tools.

Homology: X a finite simplicial complex, with $C_n(X; \mathbb{Z})$ the free abelian group with basis the n-simplices of X.

Boundary map: $\partial_n : C_n(X; \mathbb{Z}) \to C_{n-1}(X; \mathbb{Z})$

Homology:

$$H_n(X; \mathbb{Z}) = \frac{\ker(\partial_n)}{\text{image}(\partial_{n-1})} = \frac{\{n\text{-dim things without boundary}\}}{\{boundaries of (n+1)\text{-dim things}\}}$$

Example: $H_1(\text{torus}) = \mathbb{Z}^2$.

Example: $H_1(\text{torus}) = \mathbb{Z}^2$.

Homology: X a finite simplicial complex, with $C_n(X; \mathbb{Z})$ the free abelian group with basis the n-simplices of X.

Boundary map: $\partial_n : C_n(X; \mathbb{Z}) \to C_{n-1}(X; \mathbb{Z})$

Homology:

\[H_n(X; \mathbb{Z}) = \frac{\ker(\partial_n)}{\text{image}(\partial_{n-1})} = \frac{\{\text{n-dim things without boundary}\}}{\{\text{boundaries of (n + 1)-dim things}\}} \]

Example: $H_1(\text{torus}) = \mathbb{Z}^2$.

A knot K in an orientable 3-manifold Y gives an element of $H_1(Y; \mathbb{Z})$; when this is zero, K has a spanning surface by Poincaré-Lefschetz duality. Thus if $H_1(Y; \mathbb{Z}) = 0$, e.g. $Y = S^3$ or \mathbb{R}^3, then every knot has a spanning surface.

Assign a “volume” to each n-simplex in X, which gives $C_n(X; \mathbb{Z})$ an ℓ^1-norm.

Optimal Homologous Chain Problem (OHCP)

Given $a \in C_n(X; \mathbb{Z})$ find $c = a + \partial_{n+1}x$ with $\|c\|_1$ minimal.

Optimal Bounding Chain Problem (OBCP)

Given $b \in C_{n-1}(X; \mathbb{Z})$ which is 0 in $H_{n-1}(X; \mathbb{Z})$, find $c \in C_n(X; \mathbb{Z})$ with $b = \partial nc$ and $\|c\|_1$ minimal.
A knot K in an orientable 3-manifold Y gives an element of $H_1(Y; \mathbb{Z})$; when this is zero, K has a spanning surface by Poincaré-Lefschetz duality. Thus if $H_1(Y; \mathbb{Z}) = 0$, e.g. $Y = S^3$ or \mathbb{R}^3, then every knot has a spanning surface.

Assign a “volume” to each n-simplex in X, which gives $C_n(X; \mathbb{Z})$ an ℓ^1-norm.

Optimal Homologous Chain Problem (OHCP)
Given $a \in C_n(X; \mathbb{Z})$ find $c = a + \partial_{n+1}x$ with $\|c\|_1$ minimal.

Optimal Bounding Chain Problem (OBCP)
Given $b \in C_{n-1}(X; \mathbb{Z})$ which is 0 in $H_{n-1}(X; \mathbb{Z})$, find $c \in C_n(X; \mathbb{Z})$ with $b = \partial_n c$ and $\|c\|_1$ minimal.

Thm (D-H) Both OHCP and OBCP are NP-hard.

OHCP with mod 2 coefficients is NP-complete by [Chen-Freedman 2010].

Dey-H-Krishnamoorthy (2010) When X is relatively torsion free in dimension n, then the OHCP for $C_n(X; \mathbb{Z})$ can be solved in polynomial time.

Key: Applies when X is an orientable $n + 1$ manifold.

Thm (D-H) When X is relatively torsion free in dimension n and $H_n(X; \mathbb{Z}) = 0$, then the OBCP for $C_{n-1}(X; \mathbb{Z})$ can be solved in polynomial time.

Compare

Thm (D-H) When $H_2(Y; \mathbb{Z}) = 0$, the Least Spanning Area problem for a knot K can be solved in polynomial time.
Thm (D-H) *Both OHCP and OBCP are NP-hard.*

OHCP with mod 2 coefficients is NP-complete by [Chen-Freedman 2010].

Dey-H-Krishnamoorthy (2010) *When X is relatively torsion free in dimension n, then the OHCP for $C_n(X; \mathbb{Z})$ can be solved in polynomial time.*

Key: Applies when X is an orientable $n+1$ manifold.

Thm (D-H) *When X is relatively torsion free in dimension n and $H_n(X; \mathbb{Z}) = 0$, then the OBCP for $C_{n-1}(X; \mathbb{Z})$ can be solved in polynomial time.*

Compare

Thm (D-H) *When $H_2(Y; \mathbb{Z}) = 0$, the Least Spanning Area problem for a knot K can be solved in polynomial time.*

Desingularization: a toy problem

In a triangulated rectangle X, find the shortest embedded path in the 1-skeleton joining vertices p and q.

Consider $b = q - p \in C_0(X; \mathbb{Z})$, which is 0 in $H_0(X; \mathbb{Z})$. Let $c \in C_1(X; \mathbb{Z})$ be a solution to the OBCP for b.

Claim: c corresponds to an embedded simplicial path.
Desingularization: a toy problem
In a triangulated rectangle X, find the shortest embedded path in the 1-skeleton joining vertices p and q.

Consider $b = q - p \in C_0(X; \mathbb{Z})$, which is 0 in $H_0(X; \mathbb{Z})$. Let $c \in C_1(X; \mathbb{Z})$ be a solution to the OBCP for b.

Claim: c corresponds to an embedded simplicial path.

Rest of desingularization

1. Pass to the exterior of the knot K.

2. Introduce a relative version of the Optimal Bounding Chain Problem.
Rest of desingularization

1. Pass to the exterior of the knot K.

2. Introduce a relative version of the Optimal Bounding Chain Problem.