Recently put on arXiv.org

N. Dunfield, *Volume change under drilling: theory vs. experiment*. Appendix to the paper of Agol, Storm, and W. Thurston, math.DG/0506338

N. Dunfield, S. Gukov, and J. Rasmussen. *The superpolynomial for knot homologies* math.GT/0505662
Does a random tunnel-number one 3-manifold fiber over the circle?

Nathan Dunfield, Caltech
joint with
Dylan Thurston, Harvard

Slides available at
www.its.caltech.edu/∼dunfield/preprints.html
3-manifolds which fiber over S^1:

Conj. (W. Thurston) M a compact 3-manifold whose boundary is a union of tori. If M is irreducible, atoroidal, and has infinite π_1, then M has a finite cover which fibers over S^1.

Main Q: How common are 3-manifolds which fiber over S^1? Does a “random” 3-manifold fiber?
Tunnel-number one: $M = H \cup (D^2 \times I)$ along $\gamma \subset \partial H$.

Ex: Complement of a 2-bridge knot in S^3

Key: $\pi_1(M) = \langle \pi_1(H) \mid \gamma = 1 \rangle = \langle a, b \mid R = 1 \rangle$.
Dehn-Thurston coordinates:

Weights: \(a \ b \ c \); 1 2 2
Twists: \(\theta_a \ \theta_b \ \theta_c \); 0 1 -1

Def. Let \(\mathcal{T}(L) \) be the set of tunnel number one 3-manifolds coming from non-separating simple closed curves with DT coordinates \(\leq L \).

A random tunnel number one 3-manifold of size \(L \) is a random element of \(\mathcal{T}(L) \).

Interested in asymptotic probabilities as \(L \to \infty \).
Thm (Dunfield - D. Thurston 2005) Let M be a tunnel number one 3-manifold chosen at random by picking a curve in DT coordinates of size $\leq L$. Then the probability that M fibers over the circle goes to 0 as $L \to \infty$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Percentage of manifolds which fiber vs. size L of DT coordinates.}
\end{figure}
Mapping class group point of view

Fix generators of $\text{MCG}(\partial H)$ and a base curve γ_0. Apply a random sequence of generators to γ_0.

Conj With this MCG notion, the probability of fibering over S^1 is also 0.
Proof ingredients:

Stallings 1962: Determining if a 3-manifold fibers is an algebraic problem about $\pi_1(M)$.

Ken Brown 1987: If $\pi_1(M) = \langle a, b \mid R = 1 \rangle$, there is an algorithm to solve this algebraic problem.

A “magic” splitting sequence which guarantees that M doesn’t fiber.

Given a general M, does it fiber?

Consider $\phi \in H^1(M, \mathbb{Z})$, can ϕ represent a fibration?

Consider $\phi_* : \pi_1(M) \to \pi_1(S^1) = \mathbb{Z}$.

Stallings: M irreducible. Then ϕ can be represented by a fibration iff $\ker \phi_*$ is finitely generated.
Consider \(G = \langle a, b \mid R = 1 \rangle \), a quotient of the free group \(F = \langle a, b \rangle \).

Unless \(R \in [F, F] \), have \(H^1(G, \mathbb{Z}) = \mathbb{Z} \).

Think of \(H^1(F, \mathbb{R}) \) as linear functionals on this cover:

\[
\tilde{R} \text{ lift of } R = b^2abab^{-1}ab^{-1}ab^{-1}a^{-2}.
\]

\(H^1(G, \mathbb{R}) \) is generated by \(\phi \) which is projection orthogonal to the line joining the endpoints of \(\tilde{R} \).
Brown: \(G = \langle a, b \mid R = 1 \rangle \). \(\ker \phi \) is finitely generated iff the number of global extrema of \(\phi \) on \(\tilde{R} \) is 2.

\[
R = b^2abab^{-1}ab^{-1}ab^{-1}a^{-2}
\]

infinitely gen (non-fibered) \hspace{1cm} \(R' = Ra \)

infinitely gen (fibered)
Consider $G = \langle a, b \mid R = 1 \rangle$, where R is chosen at random from among all words of length L.

Q: What is the probability that G “fibers”?

A: Experimentally, the probability is 94% (based on R of length 10^8).

Thm (DT) $p_L =$ probability of fibering for R of length L. Then p_L is bounded away from 0 and 1 independent of L:

$$0.0006 < p_L < 0.975$$
Fix $\phi : F \to \mathbb{Z}$. Let $w = x_1x_2\cdots x_n$ be a word in $F = \langle a, b \rangle$. The box $B(w)$ of w records:

- $\phi(w)$
- The max and min of ϕ on a subwords $x_1x_2\cdots x_k$ and whether those maxes and mins are repeated.

Brown’s Criterion \(G = \langle a, b \mid w = 1 \rangle, \phi : G \to \mathbb{Z} \). Then $\ker \phi$ is finitely generated iff $B(w)$ is marked on neither the top or the bottom.

$$B(w_1w_2) = B(w_1) \times B(w_2)$$
Train tracks:

With weights, gives a multicurve:

Given $\gamma \subset \partial H$ in DT coordinates, then γ is also carried by some standard initial train track τ_0.

Problem: Given γ carried by τ_0 (in terms of weights) does M fiber?
Simpler question: is γ connected? Can use train track splitting to answer:
To compute the element w of $\pi_1(H)$ represented by γ, label the edges of the train track by words in w and follow along like this:

![Diagram of a train track with labels a, b, c, d, e, a·e, e·d]

Can compute related things by applying a morphism to these labels, e.g. the class of γ in $H_1(H, \mathbb{Z})$. To apply Brown’s Criterion, we label the train tracks with the corresponding boxes.

Stability: If at some intermediate stage all the boxes are marked top and bottom then M, is not fibered.

But why do we get marked boxes in the first place?
Key Lemma: If the following magic splitting sequence occurs, then at the last stage all boxes are marked. Hence M is not fibered.
Let γ be a non-separating simple closed curve on ∂H carried by τ_0 with weight $\leq L$.

Thm (DT) *The probability that M_γ fibers over S^1 goes to 0 as $L \to \infty$.***

By the key lemma, it is enough to show that the magic splitting sequence occurs somewhere in the splitting of (τ_0, γ) with probability $\to 1$ as $L \to \infty$. This follows from:

Kerckhoff 1985: *Suppose we don’t require that γ be connected or non-separating. Then any splitting sequence of complete train tracks that can happen, happens with probability $\to 1$ as $L \to \infty$.***

Mirzakhani 2003: *Let Σ be a closed surface of genus 2. Let C be the set of all non-separating simple closed curves on Σ. Then as $L \to \infty$

$$\frac{\#\{\gamma \in C \mid \text{weight} \leq L\}}{\#\{\text{All multicurves w/ coor} \leq L\}} \to c \in \frac{\mathbb{Q}^+}{\pi^6}$$