Surfaces in finite covers of 3-manifolds:
The Virtual Haken Conjecture

Nathan M. Dunfield
University of Illinois

This talk available at http://dunfield.info/
In the 1960s, Waldhausen proposed:

Virtual Haken Conjecture. Let M be compact 3-manifold. If $\pi_1(M)$ is infinite, then M has a finite cover N which contains an incompressible surface.
In the 1960s, Waldhausen proposed:

Virtual Haken Conjecture. Let M be compact 3-manifold. If $\pi_1(M)$ is infinite, then M has a finite cover N which contains an incompressible surface.

Natural place to start: studying surfaces Σ^2 in M^3. Need to ignore things like:

Convention: All manifolds are orientable.

Def. A surface $\Sigma \neq S^2$ embedded in M^3 is incompressible if $\pi_1(\Sigma) \to \pi_1(M)$ is 1-1.
Natural place to start: studying surfaces Σ^2 in M^3.

Need to ignore things like:

Convention: All manifolds are orientable.

Def. A surface $\Sigma \neq S^2$ embedded in M^3 is incompressible if $\pi_1(\Sigma) \rightarrow \pi_1(M)$ is 1-1.

Recall that $\pi_1(M)$ is the group of loops in M, up to homotopy:

Ex. $\pi_1(S^3) = 1$.

$\pi_1(T^3) = \mathbb{Z}^3$, where $T = S^1 \times S^1 \times S^1 = \mathbb{R}^3 / \mathbb{Z}^3$.

$\pi_1(W) = \langle a, b \mid a^2 b^2 a^2 b^{-1} a b^{-1} = b^2 a^2 b^2 a^{-1} b a^{-1} = 1 \rangle$.

Compressible:
Recall that $\pi_1(M)$ is the group of loops in M, up to homotopy:

Ex. $\pi_1(S^3) = 1$.

$\pi_1(T^3) = \mathbb{Z}^3$, where $T = S^1 \times S^1 \times S^1 = \mathbb{R}^3 / \mathbb{Z}^3$.

$\pi_1(W) =$

$$\langle a, b \mid a^2 b^2 a^2 b^{-1} a b^{-1} = b^2 a^2 b^2 a^{-1} b a^{-1} = 1 \rangle.$$

Compressible:

Incompressible: For $\Sigma = S^1 \times S^1 \times \{\text{pt}\} \subset T^3$, the map on π_1 is: $\mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$.

Similarly, $\Sigma \times \{\text{pt}\}$ is an incompressible surface in $M^3 = \Sigma \times S^1$.

Def. A compact M^3 is Haken if it is irreducible and contains an incompressible surface.

Irreducible: Every embedded S^2 bounds a ball, that is, M is not a connected sum.

An arbitrary M^3 is of the form $M_1 \# M_2 \# \cdots \# M_n$ where the M_k can’t be further decomposed.

If M is Haken, then $\pi_1(M)$ is infinite since $\pi_1(\Sigma) \leq \pi_1(M)$ and Σ is among:

Haken: T^3 Non-Haken: π_1 finite, e.g. S^3.

Incompressible: For $\Sigma = S^1 \times S^1 \times \{\text{pt}\} \subset T^3$, the map on π_1 is: $\mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$.

Similarly, $\Sigma \times \{\text{pt}\}$ is an incompressible surface in $M^3 = \Sigma \times S^1$.

Def. A compact M^3 is Haken if it is irreducible and contains an incompressible surface.

Irreducible: Every embedded S^2 bounds a ball, that is, M is not a connected sum.

An arbitrary M^3 is of the form $M_1 \# M_2 \# \cdots \# M_n$ where the M_k can’t be further decomposed.

If M is Haken, then $\pi_1(M)$ is infinite since $\pi_1(\Sigma) \leq \pi_1(M)$ and Σ is among: \ldots

Haken: T^3 Non-Haken: π_1 finite, e.g. S^3.

π_1 condition is not sufficient: Given a knot K in S^3, Dehn surgery creates infinitely many compact 3-manifolds via $M = X \cup_{\phi} (S^1 \times D^2)$

All but 4 Dehn surgeries on the figure-8 knot are non-Haken 3-manifolds with infinite π_1.

\[
X = S^3 \setminus \text{int}(N(K))
\]
\[\pi_1 \text{ condition is not sufficient: Given a knot } K \text{ in } S^3, \text{ Dehn surgery creates infinitely many compact } 3\text{-manifolds via } M = X \cup_{\phi} (S^1 \times D^2) \]

All but 4 Dehn surgeries on the figure-8 knot are non-Haken 3-manifolds with infinite \(\pi_1 \).

Virtual Haken Conjecture. Let \(M \) be an irreducible compact 3-manifold. If \(\pi_1(M) \) is infinite, then \(M \) has a finite cover \(N \) which is Haken.

Closely related question: Does \(M \) contain an immersed incompressible surface? Equivalently, does \(\pi_1(M) \) contain the fundamental group of some surface?
Virtual Haken Conjecture. Let M be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then M has a finite cover N which is Haken.

Closely related question: Does M contain an immersed incompressible surface? Equivalently, does $\pi_1(M)$ contain the fundamental group of some surface?

A lot of evidence for this conjecture including:

- True for all the manifolds coming from the figure-8 knot. [D-Thurston 2003].
- Weaker results for surgery on any knot, e.g. [Cooper-Long 1997, Cooper-Walsh 2006].
- True for all 11,000 examples in a census of simple 3-manifolds. In one case, a cover of degree 5,050 was needed! [D-Thurston 2003].
A lot of evidence for this conjecture including:

- True for all the manifolds coming from the figure-8 knot. [D-Thurston 2003].
- Weaker results for surgery on any knot, e.g. [Cooper-Long 1997, Cooper-Walsh 2006].
- True for all 11,000 examples in a census of simple 3-manifolds. In one case, a cover of degree 5,050 was needed! [D-Thurston 2003].

Rest of talk:

- Make the conjecture weaker and prove it.
- Make the conjecture stronger and disprove it.

Real point of talk:

- Role of geometry is crucial for this seemingly topological question (Thurston/Perelman).
- Study of 3-manifolds uses many different parts of mathematics.
Rest of talk:
• Make the conjecture weaker and prove it.
• Make the conjecture stronger and disprove it.

Real point of talk:
• Role of geometry is crucial for this seemingly topological question (Thurston/Perelman).
• Study of 3-manifolds uses many different parts of mathematics.

Virtual Haken Conjecture. Let M be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then M has a finite cover N which is Haken.
Virtual Haken Conjecture. Let M be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then M has a finite cover N which is Haken.

Conj. Let M be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then M has a non-trivial finite cover.

Equivalently, $\pi_1(M)$ has a subgroup H with $1 < [\pi_1(M) : H] < \infty$.

This seemingly simple conjecture was only proved in 2003!
Conj. Let M be an irreducible compact 3-manifold. If $\pi_1(M)$ is infinite, then M has a non-trivial finite cover.

Equivalently, $\pi_1(M)$ has a subgroup H with $1 < [\pi_1(M) : H] < \infty$.

This seemingly simple conjecture was only proved in 2003!

Geometrization (Thurston/Perelman):
A compact M^3 can be cut along spheres and incompressible tori into pieces which admit geometric structures. That is, each piece admits a homogeneous Riemannian metric modeled on one of

$$E^3, S^3, H^3, S^2 \times \mathbb{R}, H^2 \times \mathbb{R}, \text{Nil, Sol, } \widetilde{\text{SL}_2\mathbb{R}}.$$

Ex: T^3 is Euclidean as $= E^3/\mathbb{Z}^3$, whereas $S^2 \times S^1$ has a $S^2 \times \mathbb{R}$ geometry.

The case H^3 of hyperbolic geometry is the generic one; manifolds with the other geometries have been classified, and we know the VHC holds for them.
Geometrization (Thurston/Perelman):
A compact M^3 can be cut along spheres and incompressible tori into pieces which admit geometric structures. That is, each piece admits a homogeneous Riemannian metric modeled on one of \mathbb{E}^3, S^3, \mathbb{H}^3, $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, $\text{SL}_2\mathbb{R}$.

Ex: T^3 is Euclidean as $\mathbb{E}^3/\mathbb{Z}^3$, whereas $S^2 \times S^1$ has a $S^2 \times \mathbb{R}$ geometry.

The case \mathbb{H}^3 of hyperbolic geometry is the generic one; manifolds with the other geometries have been classified, and we know the VHC holds for them.

From now on, M will be a hyperbolic 3-manifold, i.e. one with a metric of constant sectional curvature -1. Equivalently, $M = \mathbb{H}^3/\Gamma$, where $\Gamma \leq \text{Isom}^+(\mathbb{H}^3) = \text{Möbius}(\hat{\mathbb{C}}) = \text{PSL}_2(\mathbb{C})$.

Here $\mathbb{H}^3 = \{x \in \mathbb{R}^3 \mid |x| < 1\}$ with the metric where $ds_{\mathbb{H}^3} = 2/(1 - |x|^2)ds_{\mathbb{E}^3}$.
From now on, M will be a hyperbolic 3-manifold, i.e. one with a metric of constant sectional curvature -1. Equivalently, $M = \mathbb{H}^3 / \Gamma$, where $\Gamma \leq \text{Isom}^+(\mathbb{H}^3) = \text{Möbius}(\hat{\mathbb{C}}) = \text{PSL}_2(\mathbb{C})$.

Here $\mathbb{H}^3 = \{ x \in \mathbb{R}^3 | |x| < 1 \}$ with the metric where

$$ds_{\mathbb{H}^3} = 2/(1 - |x|^2) ds_{\mathbb{E}^3}$$
Thm (Perelman 2003). Let M be a compact 3-manifold. If $\pi_1(M)$ is infinite, then M has a non-trivial finite cover. Equivalently, $\pi_1(M)$ has a finite-index proper subgroup.

Proof. Reduce to the case when M is hyperbolic. As M is compact, $\pi_1(M)$ is finitely generated and also $\pi_1(M) \leq \text{PSL}_2(\mathbb{C})$. A finitely generated group of matrices has many finite index subgroups by [Mal’tsev 1940s]. Idea: For $\text{PSL}_2(\mathbb{Z})$ we build the needed subgroup Λ by considering:

$$1 \to \Lambda \to \text{PSL}_2(\mathbb{Z}) \to \text{PSL}_2(\mathbb{Z}/(p\mathbb{Z})) \to 1.$$

Though this theorem is a simple topological/group theoretic statement, all known proofs rely on Geometrization and thus start with Hamilton’s Ricci flow...
Thm (Perelman 2003). Let M be a compact 3-manifold. If $\pi_1(M)$ is infinite, then M has a non-trivial finite cover. Equivalently, $\pi_1(M)$ has a finite-index proper subgroup.

Proof. Reduce to the case when M is hyperbolic. As M is compact, $\pi_1(M)$ is finitely generated and also $\pi_1(M) \leq \text{PSL}_2(\mathbb{C})$. A finitely generated group of matrices has many finite index subgroups by [Mal’tsev 1940s]. Idea: For $\text{PSL}_2(\mathbb{Z})$ we build the needed subgroup Λ by considering:

$$1 \to \Lambda \to \text{PSL}_2(\mathbb{Z}) \to \text{PSL}_2(\mathbb{Z}/(p\mathbb{Z})) \to 1.$$

Though this theorem is a simple topological/group theoretic statement, all known proofs rely on Geometrization and thus start with Hamilton’s Ricci flow…

Generalizations:

[Lubotzky 1995] Many more subgroups than just the congruence ones.

[D-Thurston 2006] Studied random Heegaard splittings. For a finite simple group Q, the number of Q-covers is Poisson distributed with mean

$$\mu = |H_2(Q;\mathbb{Z})|/|\text{Out}(Q)|.$$

E.g. the probability of an A_n cover is $1 - e \approx 0.6$.

![Diagram](image.jpg)
Generalizations:

[Lubotzky 1995] Many more subgroups than just the congruence ones.

[D-Thurston 2006] Studied random Heegaard splittings. For a finite simple group Q, the number of Q-covers is Poisson distributed with mean

$$\mu = \frac{|H_2(Q;\mathbb{Z})|}{|\text{Out}(Q)|}.$$

E.g. the probability of an A_n cover is $1 - e \approx 0.6$.

Conj. M^3 compact hypebolic. Then M has a finite cover N where $H_2(N;\mathbb{Z}) \cong H^1(N;\mathbb{Z}) \neq 0$.

Equivalently, $\pi_1(M)$ has a finite-index subgroup H where $H \rightarrow \mathbb{Z}$.

A tower of regular finite covers

$$M \leftarrow M_1 \leftarrow M_2 \leftarrow M_3 \leftarrow \cdots$$

exhausts M if $\bigcap \pi_1(M_n) = 1$.

Conj. If M_n exhaust M, then $H^1(M_n;\mathbb{Z}) \neq 0$ for some n.
Conj. M^3 compact hyperbolic. Then M has a finite cover N where $H_2(N;\mathbb{Z}) \cong H^1(N;\mathbb{Z}) \neq 0$.

Equivalently, $\pi_1(M)$ has a finite-index subgroup H where $H \rightarrow \mathbb{Z}$.

A tower of regular finite covers

$$M \leftarrow M_1 \leftarrow M_2 \leftarrow M_3 \leftarrow \cdots$$

exhausts M if $\bigcap \pi_1(M_n) = 1$.

Conj. If M_n exhaust M, then $H^1(M_n;\mathbb{Z}) \neq 0$ for some n.

Thm (Calegari-D 2006). There exists an M with exhaustion M_n where $H^1(M_n) = 0$ for all n.

Proof conditional on Langlands for GL_2 and the Generalized Riemann Hypothesis!

Thankfully, Boston-Ellenberg (2006) were able to analyze these examples unconditionally, using our picture:
Thm (Calegari-D 2006). There exists an M with exhaustion M_n where $H^1(M_n) = 0$ for all n.

Proof conditional on Langlands for GL_2 and the Generalized Riemann Hypothesis!

Thankfully, Boston-Ellenberg (2006) were able to analyze these examples unconditionally, using our picture: