1. Consider the ellipsoid with implicit equation

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. \]

(a) Parametrize this ellipsoid.

Solution. One could use the parametrization

\[x = a \sin \phi \cos \theta, \quad y = b \sin \phi \sin \theta, \quad z = c \cos \phi, \quad 0 \leq \phi \leq \pi, \quad 0 \leq \theta \leq 2\pi. \]

(b) Set up, but do not evaluate, a double integral that computes its surface area.

Solution. Since \(\mathbf{r}(\phi, \theta) = (a \sin \phi \cos \theta, b \sin \phi \sin \theta, c \cos \phi) \), one has

\[\mathbf{r}_\phi = (a \cos \phi \cos \theta, b \cos \phi \sin \theta, -c \sin \phi), \quad \mathbf{r}_\theta = (-a \sin \phi \sin \theta, b \sin \phi \cos \theta, 0), \]

so

\[\mathbf{r}_\phi \times \mathbf{r}_\theta = (bc \sin^2 \phi \cos \theta, ac \sin^2 \phi \sin \theta, ab \sin \phi \cos \theta). \]

Therefore

\[|\mathbf{r}_\phi \times \mathbf{r}_\theta| = \sqrt{b^2 c^2 \sin^4 \phi \cos^2 \theta + a^2 c^2 \sin^4 \phi \sin^2 \theta + a^2 b^2 \sin^2 \phi \cos^2 \phi}, \]

and the surface area is computed by

\[
\text{Area} = \int_{0}^{2\pi} \int_{0}^{\pi} |\mathbf{r}_\phi \times \mathbf{r}_\theta| d\phi d\theta
= \int_{0}^{2\pi} \int_{0}^{\pi} \sqrt{b^2 c^2 \sin^4 \phi \cos^2 \theta + a^2 c^2 \sin^4 \phi \sin^2 \theta + a^2 b^2 \sin^2 \phi \cos^2 \phi} d\phi d\theta.
\]

2. Let

\[\mathbf{r}(u, v) = ((2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u), \]

where \(0 \leq u \leq 2\pi \) and \(0 \leq v \leq 2\pi \).

(a) Sketch the surface parametrized by this function.

Solution. The sketch of the surface is as follows.
(b) Compute its surface area.

Solution. By the parametrization, one has

\[r_u = (-\sin u \cos v, -\sin u \sin v, \cos u), \]
\[r_v = (- (2 + \cos u) \sin v, (2 + \cos u) \cos v, 0), \]

and so

\[r_u \times r_v = (- (2 + \cos u) \cos u \cos v, - (2 + \cos u) \cos u \sin v, -(2 + \cos u) \sin u). \]

Therefore \(|r_u \times r_v| = 2 + \cos u\), and the surface area is computed by

\[
\text{Area} = \int_0^{2\pi} \int_0^{2\pi} |r_u \times r_v| \, du \, dv = \int_0^{2\pi} \int_0^{2\pi} (2 + \cos u) \, du \, dv = 8\pi^2.
\]

3. Consider the surface integral

\[
\iint_{\Sigma} z \, dS
\]

where \(\Sigma\) is the surface with sides \(S_1\) given by the cylinder \(x^2 + y^2 = 1\), \(S_2\) given by the unit disk in the \(xy\)-plane, and \(S_3\) given by the plane \(z = x + 1\). Evaluate this integral as follows:

(a) Parametrize \(S_1\) using \((\theta, z)\) coordinates.

Solution. One can parametrize \(S_1\) by

\[x = \cos \theta, \ y = \sin \theta, \ z = z, \quad 0 \leq \theta \leq 2\pi, \ 0 \leq z \leq \cos \theta + 1. \]

(b) Evaluate the integral over the surface \(S_2\) without parametrizing.

Solution. Since \(z = 0\) on \(S_2\), we know \(\iint_{S_2} z \, dS = 0\).
(c) Parametrize S_3 in Cartesian coordinates and evaluate the resulting integral using polar coordinates.

Solution. One can parametrize S_3 in Cartesian coordinates

$$x = x, \quad y = y, \quad z = x + 1, \quad -1 \leq x \leq 1, \quad -\sqrt{1-x^2} \leq y \leq \sqrt{1-x^2}.$$

Now we move to evaluate the integral $\iiint_{S} z \, dS$. Obviously

$$\iiint_{S} z \, dS = \iiint_{S_1} z \, dS + \iiint_{S_2} z \, dS + \iiint_{S_3} z \, dS = I_1 + I_2 + I_3.$$

To estimate I_1, using the parametrization in (a), one has

$$\mathbf{r}(\theta, z) = \langle \cos \theta, \sin \theta, z \rangle.$$

Then

$$\mathbf{r}_\theta = \langle -\sin \theta, \cos \theta, 0 \rangle, \quad \mathbf{r}_z = \langle 0, 0, 1 \rangle,$$

and

$$\mathbf{r}_\theta \times \mathbf{r}_z = \langle \cos \theta, \sin \theta, 0 \rangle.$$

So $|\mathbf{r}_\theta \times \mathbf{r}_z| = 1$, and

$$I_1 = \int_0^{2\pi} \int_0^{\cos \theta + 1} z \, dz \, d\theta = \int_0^{2\pi} \frac{(\cos \theta + 1)^2}{2} \, d\theta$$

$$= \int_0^{2\pi} \frac{\cos^2 \theta + 2 \cos \theta + 1}{2} \, d\theta = \frac{3\pi}{2}.$$

In (b) we know $I_2 = 0$. To evaluate I_3, by the parametrization in (c), one has

$$\mathbf{r}(x, y) = \langle x, y, x + 1 \rangle, \quad -1 \leq x \leq 1, \quad -\sqrt{1-x^2} \leq y \leq \sqrt{1-x^2},$$

and so

$$\mathbf{r}_x = \langle 1, 0, 1 \rangle, \quad \mathbf{r}_y = \langle 0, 1, 0 \rangle, \quad \mathbf{r}_x \times \mathbf{r}_y = \langle -1, 0, 1 \rangle.$$

Thus $|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{2}$, and the surface integral is

$$I_3 = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} (x + 1)\sqrt{2} \, dy \, dx = \iint_{x^2+y^2 \leq 1} (x+1)\sqrt{2} \, dy \, dx.$$

To evaluate this integral, one can use the polar coordinates

$$x = r \cos \theta, \quad y = r \sin \theta, \quad 0 \leq r \leq 1, \quad 0 \leq \theta \leq 2\pi.$$

Therefore,

$$I_3 = \int_0^{2\pi} \int_0^1 (r \cos \theta + 1)\sqrt{2} \, r \, dr \, d\theta = \sqrt{2}\pi.$$

Adding up all three integrals, one gets

$$\iiint_{S} z \, dS = I_1 + I_2 + I_3 = \frac{3\pi}{2} + \sqrt{2}\pi.$$
4. Let \(C \) be the circle in the plane with equation \(x^2 + y^2 - 2x = 0 \).

(a) Parametrize \(C \) as follows. For each choice of a slope \(t \), consider the line \(L_t \) whose equation is \(y = tx \). Then the intersection \(L_t \cap C \) of \(L_t \) and \(C \) contains two points, one of which is \((0, 0)\). Find the other point of intersection, and call its \(x \)– and \(y \)–coordinates \(x(t) \) and \(y(t) \). Compute a formula for \(\mathbf{r}(t) = (x(t), y(t)) \). Check your answer with your TA.

Solution. Bring \(y = tx \) into \(x^2 + y^2 - 2x = 0 \), then one has
\[
x^2 + t^2 x^2 - 2x = 0,
\]
and it is easy to get \(x = \frac{2}{1+t^2} \), and then \(y = \frac{2t}{1+t^2} \). Thus \(\mathbf{r}(t) = \left(\frac{2}{1+t^2}, \frac{2t}{1+t^2} \right) \).

(b) Suppose that \(t = \frac{p}{q} \) is a rational number. Show that \(x(p/q) \) and \(y(p/q) \) are also rational numbers. Explain how, by clearing denominators in \(x(p/q) - 1 \) and \(y(p/q) \), you can find a a triple of integers \(U, V, \) and \(W \) for which \(U^2 + V^2 = W^2 \).

Solution. Plug \(t = \frac{p}{q} \) into the the parametrization, one gets
\[
x(p/q) = \frac{2q^2}{p^2 + q^2}, \quad y(p/q) = \frac{2pq}{p^2 + q^2},
\]
and both of them are rational numbers. Since \((x-1)^2 + y^2 = 1\), and \(x(p/q) - 1 = \frac{q^2 - p^2}{p^2 + q^2} \), then one has
\[
\left(\frac{q^2 - p^2}{p^2 + q^2} \right)^2 + \left(\frac{2pq}{p^2 + q^2} \right)^2 = 1.
\]
By setting
\[
U = q^2 - p^2, \quad V = 2pq, \quad W = p^2 + q^2,
\]
one has \(U^2 + V^2 = W^2 \).

(c) Compute \(\int_C \frac{1}{2} \langle -y, x \rangle \cdot d\mathbf{r} \) using your parametrization above.

Solution. Since \(\mathbf{r} = \left(\frac{-2}{1+t^2}, \frac{2t}{1+t^2} \right) \), one has \(\mathbf{r}' = \left(-\frac{4t}{(1+t^2)^2}, \frac{2-2t^2}{(1+t^2)^2} \right) \). Then
\[
\int_C \frac{1}{2} \langle -y, x \rangle \cdot d\mathbf{r} = \int_{-\infty}^{\infty} \frac{1}{2} \left\langle -\frac{2t}{1+t^2}, \frac{2}{1+t^2} \right\rangle \cdot \left\langle -\frac{4t}{(1+t^2)^2}, \frac{2-2t^2}{(1+t^2)^2} \right\rangle \, dt
\]
\[
= \int_{-\infty}^{\infty} \frac{2}{(1+t^2)^2} \, dt = \pi.
\]