1. Consider the region D in \mathbb{R}^3 bounded by the xy-plane and the surface $x^2 + y^2 + z = 1$.

(a) Make a sketch of D.

Solution. The sketch of D is shown below.

(b) The boundary of D, denoted ∂D, has two parts: the curved top S_1 and the flat bottom S_2. Parameterize S_1 and calculate the flux of $\mathbf{F} = (0, 0, z)$ through S_1 with respect to the upward pointing unit normal vector field. Check your answer with the instructor.

Solution. To parametrize S_1, one has

$$\mathbf{r}(u, v) = \langle u \cos v, u \sin v, 1 - u^2 \rangle, \quad 0 \leq u \leq 1, \ 0 \leq v \leq 2\pi.$$

In order to calculate the flux, first we have

$$\mathbf{r}_u = \langle \cos v, \sin v, -2u \rangle, \quad \mathbf{r}_v = \langle -u \sin v, u \cos v, 0 \rangle,$$

and so

$$\mathbf{r}_u \times \mathbf{r}_v = \langle 2u^2 \cos v, 2u^2 \sin v, u \rangle.$$

Therefore, the flux of $\mathbf{F} = (0, 0, z)$ through S_1 with respect to the upward pointing unit normal vector field is

$$\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS = \int_0^{2\pi} \int_0^1 \mathbf{F}(u, v) \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, du \, dv$$

$$= \int_0^{2\pi} \int_0^1 (0, 0, 1 - u^2) \cdot (2u^2 \cos v, 2u^2 \sin v, u) \, du \, dv$$

$$= \int_0^{2\pi} \int_0^1 (1 - u^2) u \, du \, dv = \frac{\pi}{2}.$$
(c) Without doing the full calculation, determine the flux of \mathbf{F} through S_2 with the downward pointing normals.

Solution. Since $\mathbf{F} = 0$ on S_2, we know the flux of \mathbf{F} through S_2 is

$$\iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{S_2} 0 \cdot \mathbf{n} \, dS = 0.$$

(d) Determine the flux of \mathbf{F} through ∂D with the outward pointing normals.

Solution. By adding up the result from (a) and (b), one gets

$$\iint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS + \iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, dS = \frac{\pi}{2}.$$

(e) Apply the Divergence Theorem and your answer in (d) to find the volume of D. Check your answer with the instructor.

Solution. By the Divergence Theorem, one has

$$\iiint_D \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_D \text{div} \mathbf{F} \, dV.$$

Since $\text{div} \mathbf{F} = 1$, one gets

$$\text{Volume}(D) = \iiint_D 1 \, dV = \iiint_D \text{div} \mathbf{F} \, dV = \iiint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, dS = \frac{\pi}{2}.$$

2. Consider the vector field $\mathbf{F} = (-y, x, z)$.

(a) Compute curl \mathbf{F}.

Solution.

$$\text{curl} \, \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & x & z \end{vmatrix} = (0, 0, 2).$$

(b) For the surface S_1 above, evaluate $\iint_{S_1} (\text{curl} \, \mathbf{F}) \cdot \mathbf{n} \, dA$.

Solution. By applying the parametrization of S_1 in 1(b), one gets

$$\iint_{S_1} (\text{curl} \, \mathbf{F}) \cdot \mathbf{n} \, dA = \int_0^{2\pi} \int_0^1 (\text{curl} \, \mathbf{F}) \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, dudv = \int_0^{2\pi} \int_0^1 2u \, dudv = 2\pi.$$
(c) Check your answer in (b) using Stokes’ Theorem.

Solution. The boundary of S_1 is a unit circle centered at the origin in the xy-plane. So we can parametrize it as

\[C : \mathbf{r}(t) = (\cos t, \sin t, 0), \quad 0 \leq t \leq 2\pi. \]

Thus, by Stokes’ Theorem, one has

\[
\iint_{S_1} \left(\text{curl} \, \mathbf{F} \right) \cdot \mathbf{n} \, dA = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt
\]

\[
= \int_0^{2\pi} (-\sin t, \cos t, 0) \cdot (-\sin t, \cos t, 0) \, dt = \int_0^{2\pi} 1 \, dt = 2\pi.
\]

3. If time remains:

(a) Check your answer in 1(e) by directly calculating the volume of D.

Solution. One can use the polar coordinate to calculate the volume of D in 1(e). Let

\[x = r \cos \theta, \quad y = r \sin \theta, \quad 0 \leq r \leq 1, \quad 0 \leq \theta \leq 2\pi. \]

Then

\[
\text{Volume}(D) = \iiint_{x^2 + y^2 \leq 1} (1 - x^2 - y^2) \, dA = \int_0^{2\pi} \int_0^1 (1 - r^2) \, r \, dr \, d\theta = \frac{\pi}{2}.
\]

(b) Repeat 2 (b-c) for the surface S_2 and also for the surface ∂D. What exactly does 2(c) mean for the surface ∂D?

Solution. The normal vector of S_2 pointing downward is $\mathbf{n} = -\mathbf{k}$. Thus,

\[
\iint_{S_2} \left(\text{curl} \, \mathbf{F} \right) \cdot \mathbf{n} \, dA = \iiint_{S_2} (0, 0, 2) \cdot (0, 0, -1) \, dA = -2 \iint_{S_2} dA = -2\pi.
\]

To check the above answer using Stokes’ Theorem, one needs the parametrization of the boundary of S_2. Notice that this boundary is the same as that of S_1 except the orientation. The boundary of S_2 is parametrized by

\[C' : \mathbf{r}(t) = (\cos(2\pi - t), \sin(2\pi - t), 0), \quad 0 \leq t \leq 2\pi. \]

Thus, by Stokes’ Theorem, one has

\[
\iint_{S_2} \left(\text{curl} \, \mathbf{F} \right) \cdot \mathbf{n} \, dA = \int_{C'} \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt
\]

\[
= \int_0^{2\pi} (-\sin(2\pi - t), \cos(2\pi - t), 0) \cdot (\sin(2\pi - t), -\cos(2\pi - t), 0) \, dt
\]

\[
= \int_0^{2\pi} -1 \, dt = -2\pi.
\]
By adding up the two integrals one gets
\[
\iint_{\partial D} (\text{curl } F) \cdot \mathbf{n} \, dA = \iint_{S_1} (\text{curl } F) \cdot \mathbf{n} \, dA + \iint_{S_2} (\text{curl } F) \cdot \mathbf{n} \, dA = 2\pi + (-2\pi) = 0.
\]

Since \(\partial D\) is a surface without any curve boundary, then 2(c) shows that the integral of \(F\) along the curve boundary of the surface \(\partial D\) must be 0.

(c) For the vector field \(F = (-y, x, z)\) from the second problem, compute \(\text{div(curl } F)\). Now suppose \(F = (F_1, F_2, F_3)\) is an arbitrary vector field. Can you say anything about the function \(\text{div(curl } F)\)?

Solution. We already know, in 2(a), that \(\text{curl } F = (0, 0, 2)\), so \(\text{div(curl } F) = 0\). Generally, suppose suppose \(F = (F_1, F_2, F_3)\) is an arbitrary vector field. Then

\[
\text{curl } F = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_1 & F_2 & F_3
\end{vmatrix}
= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right),
\]

and

\[
\text{div(curl } F) = \frac{\partial}{\partial x} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) + \frac{\partial}{\partial y} \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) + \frac{\partial}{\partial z} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right)
= \frac{\partial^2 F_3}{\partial x \partial y} - \frac{\partial^2 F_2}{\partial x \partial z} + \frac{\partial^2 F_1}{\partial y \partial z} - \frac{\partial^2 F_3}{\partial y \partial x} + \frac{\partial^2 F_2}{\partial z \partial x} - \frac{\partial^2 F_1}{\partial z \partial y} = 0.
\]