Surface Parameterpalooza

1. Let \(S \) be the portion of the plane \(x + y + z = 1 \) which lies in the positive octant.

 (a) Draw a picture of \(S \).

 (b) Find a parameterization \(\mathbf{r}: D \to S \), being sure to clearly indicate the domain \(D \). Check your answer with the instructor.

 (c) Use your answer in (b) to compute the area of \(S \) via an integral over \(D \).

 (d) Check your answer in (c) using only things you learned in the first few weeks of this class.

2. Consider the surface \(S \) which is the part of \(z + x^2 + y^2 = 1 \) where \(z \geq 0 \).

 (a) Draw a picture of \(S \).

 (b) Find a parameterization \(\mathbf{r}: D \to S \). Check your answer with the instructor.

3. Let \(S \) be the surface given by the following parameterization. Let \(D = [-1, 1] \times [0, 2\pi] \) and define

 \[\mathbf{r}(u, v) = (u \cos v, u \sin v, v). \]

 (a) Consider the vertical line segment \(L = \{ u = 0 \} \) in \(D \). Describe geometrically the image of \(L \) under \(\mathbf{r} \).

 (b) Repeat for the vertical segments where \(u = -1 \) and \(u = 1 \).

 (c) Use your answers in (a) and (b) to make a sketch of \(S \).

4. Consider the ellipsoid \(E \) given by \(\frac{x^2}{9} + \frac{y^2}{4} + z^2 = 1 \).

 (a) Draw a picture of \(E \).

 (b) Find a parameterization of \(E \). Hint: Find a transformation \(T: \mathbb{R}^3 \to \mathbb{R}^3 \) which takes the unit sphere \(S \) to \(E \), and combine that with our existing parameterization of the plain sphere \(S \).