Lecture 18: Vector fields (§16.1 and 16.2)

Last time:

\[\int_C f \, ds = \int_a^b f(\hat{r}(t)) |\hat{r}'(t)| \, dt \]

where \(\hat{r} : [a,b] \to \mathbb{R}^2 \) is a parameterization of \(C \)

Note: \(ds = |\hat{r}'(t)| \, dt \) is the arc-length element

Also \(\int_C 1 \, ds = \text{Length}(C) \)

Uses:

1. Average of \(f \) on \(C \): \(\frac{1}{\text{len}(C)} \int_C f \, ds \)
2. Total mass: \(\int_C f \, ds \)
3. Area of the graph of \(f \)

[Everything works for curves in \(\mathbb{R}^3 \) except use 3. Will learn more about diff param. of the same \(C \) in section.]

Vector fields (§16.1 and 16.2)

For \(\mathbb{R}^2 \), a vector field is a function \(\tilde{F} : \mathbb{R}^2 \to \mathbb{R}^2 \)

Ex: \(\tilde{F}(x,y) = -\frac{y}{2} i + \frac{x}{2} j \)

Uses: • Wind speed/direction • Fluid flow • Force magnitude/direction • Electric/magnetic fields

\[\mathbb{R}^2 \]
Ex: Gravity
Large mass M at $(0,0)$. Force \vec{F} on small mass m depends on position $\vec{r} = (x, y)$ and points in direction $-\vec{r}$.

Newton's Law: $|\vec{F}| = \frac{MmG}{|\vec{r}|^2}$

As $\vec{F} = -C\vec{r}$, have $|\vec{F}| = C|\vec{r}| \Rightarrow C = \frac{MmG}{|\vec{r}|^3}$

So $\vec{F} = -\frac{MmG}{|\vec{r}|^3}\vec{r}$

[For several bodies, add vector fields. An electric field generated by a charged particle is similar.]

[Where have we seen vector fields before in this class?]

Ex: Gradients: If $f: \mathbb{R}^2 \to \mathbb{R}$ then $\nabla f: \mathbb{R}^2 \to \mathbb{R}^2$

1. $f(x, y) = x^2 + y^2$
 $\nabla f = (2x, 2y)$

2. $f(x, y) = \frac{MmG}{\sqrt{x^2 + y^2}} = \frac{MmG}{|\vec{r}|}$. Then
\[\nabla f = MmG \left(-\frac{1}{2} (x^2+y^2)^{-3/2}, 2x, \quad \right) \]
\[= -MmG \left(\frac{x}{(x^2+y^2)^{3/2}}, \frac{y}{(x^2+y^2)^{3/2}} \right) \]
\[= -\frac{MmG}{|\vec{r}|^3} \hat{r} = \vec{F} \]

In general, when \(\vec{F} = \nabla f \) we call \(f \) a potential function for \(\vec{F} \) and say \(\vec{F} \) is a conservative vector field. [Think potential energy/conservation of energy.]

Q: Is \(\vec{F} = -\frac{y}{2} \hat{i} + \frac{x}{2} \hat{j} \) conservative?

A: No. Suppose \(\vec{F} = \nabla f \). Since \(\vec{F} \) is tangent to the unit circle, following the circle increases \(f \). But going all the way around, we end up back at \((1,0) \).
Integrating Vector Fields (§ 16.2)

Work done by gravity: \(W = \mathbf{F} \cdot \mathbf{d} \)

[Assumes constant force.]

How much work does gravity do here?

Motion of ship \(\mathbf{r} : \mathbb{R} \to \mathbb{R}^2 \)

Force of gravity: \(\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2 \)

Break into segments:

Work done here \(\approx \mathbf{F}(\mathbf{r}(t_i)) \cdot (\mathbf{r}(t_{i+1}) - \mathbf{r}(t_i)) \approx \Delta t \mathbf{F}(\mathbf{r}(t_i)) \cdot \mathbf{r}'(t_i) \approx (\mathbf{F}(\mathbf{r}(t_i)) \cdot \mathbf{r}'(t_i)) \Delta t \)

Sum up and take \(\Delta t \to 0 \) to learn

Total Work \(= \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt \)
General Setup: \(C \) curve in \(\mathbb{R}^n \)
\[\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n \text{ a vector field} \]
\[\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{\hat{r}}(t)) \cdot \mathbf{\hat{r}}'(t) \, dt \]
for any parameterization \(\mathbf{\hat{r}}: [a, b] \to \mathbb{R}^n \) of \(C \).

[Note: Answer only depends on direction of param.]

Ex: \(C \) \hspace{1cm} \(\mathbf{\hat{r}}(t) = (t, t^2) \) for \(0 \leq t \leq 1 \)
\(\mathbf{\hat{r}}'(t) = (1, 2t) \)

For \(\mathbf{F} = (y, 1) \) we have
\[\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \mathbf{F}(\mathbf{\hat{r}}(t)) \cdot \mathbf{\hat{r}}'(t) \, dt = \int_0^1 (t^2, 1) \cdot (1, 2t) \, dt \]
\[= \int_0^1 t^2 + 2t \, dt = \left[\frac{t^3}{3} + t^2 \right]_0^1 = \frac{4}{3} \]

Here's why this is consistent with the work interpretation of \(\int_C \mathbf{F} \cdot d\mathbf{r} \).