Last time: \(A \in M_{n \times n}(\mathbb{R}) \):

1. \(A \xrightarrow{R_r \leftrightarrow R_s} B \) \(\Rightarrow \) \(\det(B) = -\det(A) \)
2. \(A \xrightarrow{cR_r} B \) \(\Rightarrow \) \(\det(B) = c \det(A) \)
3. \(A \xrightarrow{cR_s + R_r} B \) \(\Rightarrow \) \(\det(B) = \det(A) \)

Today: \(\det(AB) = \det(A) \det(B) \)

\[\text{Strategy: Relate row ops to matrix multiplication, but first here's one more easy consequence of what we learned last time.} \]

Recall \(\text{rank}(A) = \dim(\text{ColSp}(A)) = \dim(\text{RowSp}(A)) \).

Thm: For \(A \in M_{n \times n}(\mathbb{R}) \), if \(\text{rank}(A) < n \) then \(\det(A) = 0 \).

Proof: As \(\text{rank}(A) < n \), some row is a linear combination of the others, say

\[a_r = c_1 a_1 + \cdots + c_{r-1} a_{r-1} + c_{r+1} a_{r+1} + \cdots + c_n a_n \]

where \(a_i \) is row \(i \) of \(A \). If we do row ops
- C_i R_i + R_r for i = 1, ..., n and i ≠ r, then we get a matrix B whose r-th row is 0.

Hence by last time \(\text{det}(B) = 0 \). By 3, we have \(\text{det}(A) = \text{det}(B) \) so \(\text{det}(A) = 0 \) as req'd.

Def: An non-elementary matrix is the result of doing a single row operation to \(I_n \).

Ex:

1. \(I_3 \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \)

2. \(I_4 \xrightarrow{R_1 \leftrightarrow R_4} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \)

3. \(I_4 \xrightarrow{5R_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \)

4. \(I_4 \xrightarrow{5R_2 + R_1} \begin{pmatrix} 1 & 5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \)

5. \(I_4 \xrightarrow{-3R_1 + R_4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{pmatrix} \)

Note that these are the identity matrix except in at most 1 place (2 and 3) or 4 places (1).
Thm: Suppose E is the elementary matrix where $I_n \xrightarrow{R} E$. If $A \in M_{n \times n}(\mathbb{R})$ then $A \xrightarrow{R} EA$.

Proof of Thm: HW #7.

Thm: Every elementary matrix is invertible.

Proof: Suppose $I_n \xrightarrow{R} E$. Let R' be the row operation that reverses R, that is $A \xrightarrow{R} B \xrightarrow{R'} A$ for all $A \in M_{n \times n}(\mathbb{R})$. [Query: Why does this exist?]

Let E' be the elementary matrix associated with R'. By previous theorem, have

\[
E'E = \text{result of doing } R' \text{ to } E = I_n
\]
\[
EE' = \text{result of doing } R \text{ to } E' = I_n
\]
So E is invertible with inverse E'.

Thm: $A \in M_{n \times n}(\mathbb{R})$ is invertible if and only if it is the product of elementary matrices.

Proof: (\Leftarrow) If $A = E_1 E_2 \cdots E_k$ with E_k elementary, then each E_k is invertible and so

$$A^{-1} = E_k^{-1} E_{k-1}^{-1} \cdots E^{-1}$$

by HW.

(\Rightarrow) If A is invertible, then

$$B = (A : I_n) \xrightarrow{\text{row ops}} (I_n : A^{-1}) = C$$

As each row operation can be implemented by a product by an elementary matrix, we have E_k where

$$E_k \cdots E_2 E_1 B = C$$

which implies

$$E_k E_{k-1} \cdots E_2 E_1 A = I_n$$
and so

\[A = E^{-1}_e \cdots E^{-1}_2 E^{-1}_1 \]

As the E^{-1}_k are also elementary, we're done. \(\square\)

Theorem: \(\det(AB) = \det(A) \det(B) \).

Proof: If \(\text{rank}(AB) < n \) then \(\det(AB) = 0 \).

Moreover, one of \(A, B \) must have rank \(< n \) and so one of \(\det(A) \), \(\det(B) \) is \(0 \). So

\[\det(AB) = \det(A) \det(B) \] in this case.

So we have reduced to the case where \(A, B, \) and \(AB \) all have rank \(n \). In particular

\[A = E_1 \cdots E_e \quad B = E_{l+1} \cdots E_m \]

where \(E_k \) are elementary. The result now follows from
Claim: Suppose $C = E'_1 \ldots E'_p$ where E'_k are elementary. Then

$$\det(C) = (-1)^{\text{(# of type 1 E'_k)}} \cdot (\text{product of } C_k \text{ in all type 2 } E'_k)$$

Proof of Claim: C is obtained from I_n, which has $\det 1$, by the row ops $R'_p, R'_{p-1}, \ldots, R'_1$.

By last time, only the type 1 and 2 ops change the det and moreover do so in a way that proves the claim.

Cor: For $A \in M_{n \times n}(\mathbb{R})$, have $\det(A) \neq 0$ if and only if A is invertible.

Proof: If A is invertible, then $1 = \det(I_n) = \det(A \cdot A^{-1}) = \det(A) \cdot \det(A^{-1}) \Rightarrow \det(A) \neq 0$.

If instead A is not invertible, then $\det(A) = 0$ by first result of today.