Lecture 3: Subspaces (§ 1.3 of [FIS])

Previously on Math 416...

A vector space over \mathbb{R} is a set V with two operations (vector addition and scalar mult.) satisfying:

1-2) vector addition is commutative and associative.
3) There is a zero vector.
4) Additive inverses exist.
5) $1v = v$
6) Scalar mult. is assoc.
7-8) Distributive properties.

Ex: \mathbb{R}^n, $\text{Mat}_{m\times n}(\mathbb{R})$, spaces of functions...

Back to \mathbb{R}^3: Other basic objects: lines and planes.

Today: Analog of such in a general vector space.
Suppose W is a plane in \mathbb{R}^3 containing 0, and w_1, w_2 are vectors in W. Then $w_1 + w_2$ is also in W. So is aw_1 for any a in \mathbb{R}.

Note: Important that W contains 0 here, as otherwise these props need not hold.

Def: Suppose V is a vector space over \mathbb{R}. A subset W of V is a subspace if

1. 0 is in W
2. For all w_1, w_2 in W, the sum $w_1 + w_2$ is also in W.
3. For all c in \mathbb{R} and w in W, cw is also in W.

[Can replace 1 with requirement that W is nonempty.]
Ex: Some subspaces of \mathbb{R}^3:

1. \mathbb{R}^3
2. $\{0\}$
3. $\{(x,0,0) \text{ for } x \text{ in } \mathbb{R}\}$
4. $\{(x,-x,2x)\}$
5. $\{(x,y,0)\}$
6. $\{x+y+z = 0\} = \{s(1,0,-1)+t(1,-1,0) \text{ for } s,t \text{ in } \mathbb{R}\}$

Ex: In any vector space V, the subsets $\{0\}$ and V are subspaces.

Thm: Suppose W is a subspace of a vector space V. Then W is itself a vector space under the two operations inherited from V.

Proof: First by requirements 2 and 6 we do have two ops taking values in W.

Of the 8 conditions, 1-2 and 5-8 are immediate from the fact that V itself is a vector space. Moreover, 3 follows from subspace cond. 2.
Finally, for 4 given \(w \) in \(W \) we know there is a \(v \) in \(V \) such that \(v + w = 0 \).

Issue: Does \(v \) have to be in \(W \)?

Yes, since we can take \(w = -(v) \) which is in \(W \) by 5. Check: \(v + (-1)v = 1v + (-1)v = (1-1)v = 0v = 0 \) \(\Rightarrow \) Thm of last time.

So \(W \) with these ops satisfies 8 and so is a vector space.

Non-Ex: \(W = \{(w_1, w_2) \text{ with } w_i \geq 0\} \) in \(\mathbb{R}^2 \) is not a subspace.

Satisfies 4 and 6 but not 5.

In proof of them, everything works except 4.

[Discuss difference with book's treatment of subspaces.]
Ex: \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \)

\[
A = \begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
A_{21} & A_{22} & \cdots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n1} & A_{n2} & \cdots & A_{nn}
\end{pmatrix} = (A_{ij})
\]

Transpose: \(A^t \) where \(A^t_{ij} = A_{ji} \)

\[
\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^t = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^t = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 6 \\ 3 & 6 & 9 \end{pmatrix}
\]

[Also works for non-square matrices.]

A matrix \(A \) in \(\text{Mat}_{n \times n}(\mathbb{R}) \) is symmetric if

\(A = A^t \).

Ex: \(\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \) but neither of the two examples above.

Thm: The subset of symmetric matrices in \(\text{Mat}_{n \times n}(\mathbb{R}) \) is a subspace.
Proof: The 0 in Mat\(_{nxn}\)(R) is \(\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \) which is symmetric so 0 holds.

For 1 and 2, first show that for all \(A, B \) in Mat\(_{nxn}\)(R) and \(a, b \) in R one has

\[
(aA + bB)^t = a(A^t) + b(B^t).
\]

Now if \(A, B \) are sym, then

\[
(A + B)^t = A^t + B^t = A + B
\]

and so \(A + B \) is also sym, proving 6.

The argument for 3 is similar. \(\square \)

Next time: Linear combinations and linear equations