Lecture 2: Vector spaces

Ex: Vectors in \(\mathbb{R}^2 \), \(\mathbb{R}^3 \), or indeed \(\mathbb{R}^n \).

Def: A vector space over \(\mathbb{R} \) is a set \(V \) with two operations

Addition: Assigns to each pair \(v, w \) in \(V \) a unique \(v + w \) in \(V \).

Scalar mult: Assigns to each \(a \) in \(\mathbb{R} \) and \(v \) in \(V \) a unique \(av \) in \(V \).

where the following rules hold.

1) For all \(u, v \) in \(V \), \(u + v = v + u \).
2) For all \(u, v, w \) in \(V \), \((u + v) + w = u + (v + w) \).
3) There is an elt of \(V \), called "0", so that for all \(v \) in \(V \), \(v + 0 = v \).
4) For all \(v \) in \(V \) there exist \(w \) in \(V \) with \(v + w = 0 \).
5) For all v in V, $1v = v$.
6) For all a, b in \mathbb{R} and v in V, $(ab)v = a(bv)$
7) For all a in \mathbb{R} and u, v in V:

 \[a(u + v) = au + bv \]
8) For all a, b in \mathbb{R} and v in V, $(a + b)v = av + bv$

Example: \mathbb{R}^n with coordinate-wise addition and scalar mult.

[Check one rule, chosen by the class.]

Example:

\[
\text{Mat}_{m \times n} = \left\{ \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & \cdots & a_{mn} \end{pmatrix} \mid \text{where } a_{ij} \text{ are in } \mathbb{R} \right\}
\]

where addition and scalar mult are again componentwise.

\[
\begin{pmatrix} 1 & 0 & 3 \\ 0 & 5 & 1 \end{pmatrix} + 2 \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 7 \\ 0 & 3 & 7 \end{pmatrix}
\]

\[
\begin{pmatrix} 2 & 2 & 4 \\ 0 & -2 & 6 \end{pmatrix}
\]
Example: \(f = \{ \text{Continuous functions from } [-1, 1] \text{ to } \mathbb{R} \} \)

- \(f + g \) is the function \((f + g)(x) = f(x) + g(x)\).
- \(af \) is the function \((af)(x) = af(x)\).

Some aspects of vectors in 2 and 3d are not part of this definition (no dot product, for ex.), however, many familiar properties do follow from these rules. For example,

Definition: \(\mathbf{0} \cdot \mathbf{v} = \mathbf{0} \)
\[\mathbf{0} \in \mathbb{R} \quad \mathbf{v} \in V \]

Thm: If \(u, v, w \) are in a vector space \(V \)

and \(u + w = v + w \), then \(u = v \).

Proof: By (4), there is a \(z \) in \(V \) with

\(w + z = 0 \). So

\[u = u + 0 = u + (w + z) = (u + w) + z \quad \text{(3)} \]

\[= (v + w) + z = V + (w + z) = V + 0 = V \quad \text{(3)} \]

Hypothesis
Thm: If \(v \) is in a vector space \(V \), then \(0v = 0 \) in \(V \).

Proof: We have

\[
0v + 0v = (0 + 0)v = 0v = 0v + 0
\]

\[\text{(③)}\]

\[\text{(①)}\]

By the previous theorem, this gives

\(0v = 0 \).

Related facts (see text and HW)

a) The 0 vector is unique.

b) The vector \(w \) with \(v + w = 0 \) is unique; we'll call it "\(-v\)". Note

\[-v = (-1)v \text{ as}\]

\[v + (-1)v = 0 \text{ by above.}\]
Sometimes, we will want to use scalars other than \(\mathbb{R} \), for example the complex numbers \(\mathbb{C} = \{a + bi\} \) where \(a, b \) are in \(\mathbb{R} \) and \(i^2 = -1 \). More generally, we can define a vector space over an arbitrary field \(\mathbb{F} \), which is a set with four operations \((+, \times, -, ÷) \) satisfying a bunch of axioms. For the first part of this course we will just focus on \(\mathbb{R} \), but the text uses the language of fields.

See Appendix C of [FJS] for more of fields.