Lecture 28:

Last time: \(\lambda \) an eigenvalue of \(A \in M_{n \times n} \).

Algebraic Mult: \# of times \((t - \lambda)\) divides char poly of \(A \).

Geometric Mult: \(\dim (E_\lambda) \).

Thm: A matrix \(A \in M_{n \times n}(\mathbb{R}) \) is diagonalizable if and only if:

1) The char poly of \(A \) splits completely over \(\mathbb{R} \).
2) For all eigenvalues of \(A \),

\[(\text{alg mult}) = (\text{geom mult}) . \]

Lemma: Suppose \(v_1, \ldots, v_k \in \mathbb{R}^n \) are eigenvectors of \(A \) corresponding to distinct eigenvalues \(\lambda_1, \ldots, \lambda_k \).

Then \(\{v_1, \ldots, v_k\} \) is linearly independent.

Moral: Can't create an eigenvector with eigenvalue \(\lambda \) from eigenvectors with other eigenvalues.
Ex: $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$

Proof of Lemma: Induction on k.

Base case: As v_1 is an eigenvector, $v_1 \neq 0$ and so $\{v_1\}$ is linearly independent.

Inductive Step: Assume $\{v_1, \ldots, v_{k-1}\}$ is linearly independent. Suppose there are scalars with

$$a_1 v_1 + a_2 v_2 + \cdots + a_k v_k = 0 \quad (1)$$

Multiplying both sides by A gives

$$a_1 \lambda_1 v_1 + \cdots + a_k \lambda_k v_k = A 0 = 0 \quad (2)$$

Considering $-\lambda_k (1) + (2)$ gives

$$a_1 (\lambda_1 - \lambda_k) v_1 + \cdots + a_{k-1} (\lambda_{k-1} - \lambda_k) v_{k-1} + a_k v_k = 0$$

So for $i < k$ have $a_i (\lambda_i - \lambda_k) = 0$; as $\lambda_i \neq \lambda_k$ this forces $a_i = 0$ for $i < k$.

Thus (1) gives $a_k v_k = 0$ which implies $a_k = 0$.
So all $a_i = 0$ and $\{v_1, \ldots, v_k\}$ is linearly independent, completing the induction. \[\square\]

Proof of Thm: (\Rightarrow) By last time, know char poly $A = (\lambda_i - t)^{m_i} \cdots (\lambda_k - t)^{m_k}$ where the m_i are the distinct eigenvalues of A and $\sum m_i = n$. Set $d_i = \dim E_{\lambda_i}$.

Must show each $d_i = m_i$ and already know that $d_i \leq m_i$. Let β be a basis of \mathbb{R}^n consisting of eigenvectors for A. Set $C_i = \# \{ v \in \beta \mid v \in E_{\lambda_i} \}$. As any subset of β is linearly indep, must have $C_i \leq d_i$.

Now

\[n = \sum C_i \leq \sum d_i \leq \sum m_i = n \]
which forces \(d_i = m_i \) for all \(i \) as req'd.

\[(\Leftarrow)\] Let \(\lambda_i, d_i, m_i \) be as above. As the char poly splits completely, have \(\Sigma m_i = n \),
and by assumption \(m_i = d_i \) for each \(i \).

Let \(\beta_i \) be a basis for \(E_{\lambda_i} \).

Claim: \(\beta = \beta_1 \cup \ldots \cup \beta_k \) is a basis for \(\mathbb{R}^n \).

If so, then \(A \) is diagonalizable as desired.

Now \(E_{\lambda_i} \cap E_{\lambda_j} = \emptyset \) if \(i \neq j \), so

\[
\# \beta = \sum_{i=1}^{k} \# \beta_i = \sum_{i=1}^{k} m_i = n
\]
and thus it suffices to show that \(\beta \) is linearly independent.

Suppose

\[
\beta_i = \{ v_1^i, v_2^i, \ldots, v_{m_i}^i \}
\]
and there are scalars a^i_j where

$$\sum_{i=1}^{k} \left(\sum_{j=1}^{m_i} a^i_j v^i_j \right) = 0$$

w_i

Each w_i is either 0 or an eigenvector corr. to λ_i. By lemma, can't have a linear dependence among eigenvectors with different eigenvalues, so must have all $w_i = 0$. As each β_i is linearly independent, must have $a^i_1, \ldots, a^i_{m_i}$ all 0.

So all $a^i_j = 0$ and so β is linearly independent. This proves the claim and thus the theorem. Q.E.D.