Lecture 35: Projections and adjoints (§6.3)

For $S \subseteq V$, set $S^\bot = \{x \in V \mid \langle x, y \rangle = 0 \text{ for all } y \in S\}$

Thm: Suppose W is a finite-dimensional subspace of an inner product space V. For each $y \in V$ there are unique vectors $w \in W$ and $z \in W^\bot$ with $y = w + z$.

called orthogonal projection of y onto W, denoted proj$_W(y)$.

More on Least Squares Fitting:

Data: (x_i, y_i, z_i) for $i = 1, 2, \ldots, n$.

Model: $z = ax^2 + bx + cy + d \sin y$

In \mathbb{R}^n, consider $X = (x_1, \ldots, x_n)$, $Y = (y_1, \ldots, y_n)$, $Z = (z_1, \ldots, z_n)$, $U = (x_1^2, x_2^2, \ldots, x_n^2)$, $V = (\sin(y_1), \ldots, \sin(y_n))$

If the model fit perfectly, z would have scalars $a, b, c, d \in \mathbb{R}$ with

$$z = au + bx + cy + dv$$
as vectors in \mathbb{R}^n.
By cor. from last time, the closest point on W to the given z is $W = \text{span} \{u, x, y, v\}$.

$\text{proj}_W(z)$

where here closest means minimizing $\|W - z\|$, where $\|\cdot\|$ comes from the dot product. The best fit parameters for the model are the (a, b, c, d) where

$\text{proj}_W(z) = a u + b x + c y + d v$

Computing projections: Suppose $\beta = \{w_1, \ldots, w_k\}$ is a basis for a subspace W of \mathbb{R}^n. Let $A \in \mathbb{M}_{n \times k}(\mathbb{R})$ be the matrix whose columns are w_1, \ldots, w_k. Then

$\begin{bmatrix} \text{proj}_W \end{bmatrix}_\beta^{\beta} = (A^t A)^{-1} A^t$

where $\text{proj}_W : \mathbb{R}^n \to W$ is orthogonal projection with respect to the dot product.

[Compare to formulation of projection from last time: $\sum \langle y, u \rangle u$]
Suppose T is a linear operator on a finite dimensional inner product space V. An adjoint of T is a linear operator T^* on V where

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle \quad \text{for all } x, y \in V.$$

Ex: $V = (\mathbb{R}^n, \text{dot prod})$

$$T = L_A \quad \text{for } A \in M_{n \times n}(\mathbb{R})$$

Claim: $T^* = L_{A^t}$ is an adjoint for T

Proof: View elements of \mathbb{R}^n as column vectors. Then

$$\langle x, y \rangle = x_1 y_1 + \cdots + x_n y_n = (y_1 \ldots y_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = y^t x$$

Now

$$\langle T(x), y \rangle = \langle Ax, y \rangle = y^t (Ax) = (y^t A^t) x$$

$$= (A^t y)^t x = \langle x, A^t y \rangle = \langle x, T^*(y) \rangle$$
Thm: Any linear operator T on a finite-dimensional inner product space V has an adjoint which moreover is unique. If β is any orthonormal basis for V, then $[T^*]_\beta = ([T]_\beta)^*$.

Proof: See text. [Meditate on abstraction and Gram-Sch.]

Note: For inner product spaces over \mathbb{C}, the distinction between A^t and $A^* = \overline{A}^t$ matters.

[Back to projection...]

Lemma: Suppose $A \in M_{n \times k}(\mathbb{F})$ where $\mathbb{F} = \mathbb{R}$ or \mathbb{C}. For any $x \in \mathbb{F}^k$ and $y \in \mathbb{F}^n$ we have

$$\langle Ax, y \rangle = \langle x, A^* y \rangle$$

where \langle , \rangle denotes the standard inner product on \mathbb{F}^n.

Note: For $u,v \in \mathbb{F}^k$, have $\langle u, v \rangle_{\text{std}} = v^* u$.

Proof: \(\langle Ax, y \rangle = y^*Ax = (A^*y)^*x = \langle x, A^*y \rangle \).

Lemma: Suppose \(A \in M_{n \times k}(F) \) has rank \(k \). Then \(A^*A \in M_{k \times k}(F) \) is invertible.

Proof: It suffices to show that \(N(A^*A) = \{0\} \).
Suppose \(A^*Ax = 0 \) for some \(x \in F^k \). Then \(0 = \langle A^*Ax, x \rangle = \langle Ax, (A^*)^*x \rangle = \langle Ax, Ax \rangle \) and so \(Ax \) is zero, i.e. \(x \in N(A) \). As \(A \) has rank \(k \), this forces \(x = 0 \).

Thm: Suppose \(A \in M_{n \times k}(F) \) has rank \(k \).
Let \(W = \text{ColSp}(A) \subseteq F^n \). For any \(y \in F^n \), the projection of \(y \) onto \(W \) is \(A(A^*A)^{-1}A^*y \).

Proof: Set \(w = A(A^*A)^{-1}A^*y \).
Note that \(w \in W \) since \(Ax \in W \).

If we define \(z = y - w \), then...
prove the theorem it is enough to show that $z \in W^\perp$. For any $x \in \mathbb{F}^k$, consider

$$\langle Ax, z \rangle = \langle Ax, y - w \rangle \underbrace{w}_{\text{w}}$$

$$= \langle x, A^*y - A^*(A(A^*)^{-1})A^*y \rangle$$

$$= \langle x, 0 \rangle = 0.$$

Thus $z \in W^\perp$ as needed to prove the theorem.

[Now relate back to 1st statement about projections.]