Lecture 6: Level sets in 3^d (§14.1) and quadric surfaces (§12.6); review of limits (§14.2)

Last time: $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x^2 - y^2$

Graph

For $f : \mathbb{R}^3 \to \mathbb{R}$, can't draw the graph (it's in \mathbb{R}^4) but can still look at level sets.

[Did $f(x, y, z) = x^2 + y^2 + z^2$ last time.]

Ex: $f(x, y, z) = x^2 + y^2 - z^2$

First, in the xz-plane $f(x, 0, z) = x^2 - z^2$

so the level sets there match the above picture.
Another important tool for drawing graphs and level sets is:

Symmetry: As $r^2 = x^2 + y^2$, we can write $f(x, y, z) = r^2 - z^2$. Thus, each level set is rotationally symmetric about the z-axis.

These level sets are examples of quadric surfaces.
Conic sections: Solution is \mathbb{R}^2 of

$$A x^2 + Bxy + Cy^2 + Dx + Ey + F = 0.$$

- circle
- ellipse
- parabola
- hyperbola

Quadratic surfaces in \mathbb{R}^3 (§12.6 and upcoming worksheet)

$$Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Gx + Hy + Iz + J = 0$$

Ex: Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Elliptic paraboloid:

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Hyperbolic paraboloid:

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$
The other quadric surfaces are the (double) cone and the hyperboloids of one and two sheets. You'll learn more about these in section and on the HW.

Limits (§14.2)

To talk about derivatives of functions of several variables, we need to understand limits:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

There are different perspectives on limits; I'll focus on them as a way of estimating/controlling error.

Suppose we want to fabricate a square with area 1m^2 but it comes back with sides of length $1+h$.

$$\text{area} = (1+h)^2 - 1 = h^2 + 2h$$

Q: If we want this error to be $\frac{1}{10}$, to what tolerance do we need to make the square?
Consider \(E : \mathbb{R} \to \mathbb{R} \) (think "error function"). We say \(\lim_{h \to 0} E(h) = 0 \) if given \(\varepsilon > 0 \) we can always find \(\delta > 0 \) so that whenever \(0 < |h| < \delta \) we have \(|E(h)| < \varepsilon \).

\[
\begin{array}{c}
E(h) \\
\end{array}
\]

Ex: \(E(h) = h^2 \)

[View as challenge-response process.]

1st Challenge: \(\varepsilon = \frac{1}{10} \). Take \(\delta = \frac{1}{4} \). If \(|h| < \delta = \frac{1}{4} \) then \(|E(h)| = |h^2| = |h|^2 < \frac{1}{16} < \frac{1}{10} \).

2nd Challenge: \(\varepsilon = \frac{1}{100} \) \(\delta = \) Audience response

3rd Challenge: \(\varepsilon = \frac{1}{10000} \) \(\delta = \) —— “” ——
Claim: \(\lim_{h \to 0} h^2 = 0 \).

Reason: If you give me \(\varepsilon > 0 \), I'll take \(\delta = \sqrt{\varepsilon} \).

Then if \(|h| < \delta \) we have \(|h|^2 = |h|^2 < \delta^2 = \varepsilon \), as desired.

Ex: \(E(h) = h^2 + 2h \) \(\lim_{h \to 0} h^2 + 2h = 0 \)

by "limit laws" from Calc I.

Given \(\varepsilon = \frac{1}{10} \), take \(\delta = \frac{1}{100} \). If \(|h| < \delta \), then
\[
|h^2 + 2h| \leq |h|^2 + 2|h| < \left(\frac{1}{100} \right)^2 + \frac{2}{100}
\]
\[
< \frac{3}{100} < \frac{1}{10} = \varepsilon.
\]

Note: In general, say \(\lim_{x \to a} f(x) = c \)

if \(f(a + h) = c + E(h) \)

where \(\lim_{h \to 0} E(h) = 0 \).