Goal Thm: G finite gp. Then \exists a Galois extension $K/C(t)$ with group G.

Plan: 1. Find a curve V in \mathbb{P}^n_C on which G acts by symmetries, so that $V/G = \mathbb{P}^1_C$.
2. G is now a subgp of $\text{Aut}(K=C(V))$.
3. $K_G = C(V)_G = C(V/G) = C(\mathbb{P}^1_C) = C(t)$.

Given a group G, let's make it act on some geometric object.

Def: Let S be a generating set for G. The Cayley graph $\Gamma(G,S)$ has

1. a vertex V_g for each $g \in G$
2. an edge labeled s from V_g to V_{gs} $\forall g \in G, s \in S$.

Ex: $G = C_2 \times C_2 = \{1, \tau, \sigma, \tau \sigma\}$

$S = \{\tau, \sigma\}$
Ex: \(G = C_n \), \(S = \{ \text{gen } \sigma \} \)

\[
\begin{align*}
\text{Ex: } S_3 & = \{ 1, (12), (13), (23), \\
& (123), (132) \} \\
S & = \{ a = (12), \ b = (123) \}
\end{align*}
\]

g joined to gs:

\[(12)(123) = (1)(23)\]

Q: What is \(abab^{-1}ab\)?

A: \(a = (12)\)

For any \((G, S)\), the group \(G\) acts on \(\Gamma(G, S)\) by \(g \cdot V_h = V_{gh}\). This respects the edges, since an "s" edge joins \(V_h \rightarrow V_{hs}\) and so there is also an "s" edge from \(g \cdot V_h = V_{gh}\) to \(g \cdot V_{hs} = V_{ghs}\).
Aside: Can also do for infinite groups, leading to geometric group theory:

- Certain families of Cayley graphs are expanders:

\[G = \text{PSL}_2 \mathbb{F}_p \quad S = \{ (0,1), (1,0) \} \]

In the main example:

a acts on \(\Gamma \) by rotation by \(\pi \):

\[(123) \rightarrow (132) \]

b acts on \(\Gamma \) by rotation by \(2\pi/3 \):

\[(12)(132) = (13) \]

\[(12)(123) = (23) \]
What is Γ/G? A: $b \circlearrowleft \rightarrow a$.

As we want G to act on a surface, thicken Γ/G to

and correspondingly thicken Π to

For each boundary circle, add a disc.

Γ/G becomes

$X = _ _ = P_c'$
and Γ' becomes $\gamma = \bigcirc$ as well.

The action of G on Γ' gives an action of G on γ.

\[
\begin{align*}
(13)\quad & b \\
2\pi/3\quad & (23)\text{ rotates by } \pi \\
\pi/3\quad & a
\end{align*}
\]

\[
S_3 = \text{orientation-preserving symmetries of the bipyramid.}
\]

There $p: \gamma \to \gamma/G = X$ extending $\Gamma \to \Gamma/G$.

First, note that $\Gamma \to \Gamma/G$ is locally 1-1 (a homeomorphism). The same is true for $p: \gamma \to X$, except at the 8 points...
That are fixed by some elt of \(G \), which are the centers of the added discs.

At these points, the quotient map \(p \) looks like

\[
\begin{align*}
\mathbb{Z} &\rightarrow \mathbb{Z}^2 \\
\mathbb{Z} &\rightarrow \mathbb{Z}^3
\end{align*}
\]

So \(p: Y \rightarrow X \) is a branched covering map which looks locally like a polynomial.

Next time: We will invoke the Riemann existence theorem to turn this into an honest rat'l map \(Y \rightarrow X \), giving an extension \(K/\mathbb{C}(t) \) with
Galois group S_3.

Note: The construction of $p: Y \to X = P^1_c$ from $\Gamma_1(6,5)$ is completely general.

It's the Riemann existence theorem that's hard...