Lecture 19: Cyclotomic Fields and Applications

\(\mathbb{Q}(\zeta_n) \) with \(\zeta_n = e^{2\pi i/n} \); \(\mu_n = \{ z \in \mathbb{C} \mid z^n = 1 \} \)

\(\Phi_n(x) = \prod_{d \mid n} (x - \zeta_d) \). Then \(x^n - 1 = \prod_{d \mid n} \Phi_d(x) \) for any primitive \(n \).

Thm: For any \(n \), \(\Phi_n(x) \) is in \(\mathbb{Z}[x] \) and is irreducible.
Hence \([\mathbb{Q}(\zeta_n) : \mathbb{Q}] = |\mu_n^{\text{primitive}}| = \phi(n)\).

Pf that \(\Phi_n(x) \in \mathbb{Z}[x] \): We induct on \(n \).

Set \(f(x) = \prod_{d \mid n} \Phi_d(x) \), so then \(x^n - 1 = f(x) \Phi_n(x) \) in \(\mathbb{Q}[x] \) by induction.

In \(\mathbb{Q}[x] \) have \(x^n - 1 = q(x)f(x) + r(x) \) with \(\deg r < \deg f \). Then in \(\mathbb{C}[x] \) have

\[\Phi_n(x)f(x) = \Phi_n(x)q(x)f(x) + \Phi_n(x)r(x) \Rightarrow (\Phi_n(x) - q(x))f(x) = r(x) \]

\(\Rightarrow r(x) = 0 \) as \(\deg r < \deg f \). So \(\Phi_n(x) = q(x) \) and \(\Phi_n(x) \in \mathbb{Q}[x] \) and by Gauss in \(\mathbb{Z}[x] \) as well.
Proof of Irreducibility: Suppose $\Phi_n = f \cdot g$ for $f, g \in \mathbb{Z}[x]$ with f irreducible.

Claim: Suppose S is a root of f. If p is a prime not dividing n, then S^p is also a root of f.

Assuming this, let S be a fixed root of f. Then any primitive nth root is S^m where $m = p_1 p_2 \cdots p_k$ and all $p_i \nmid n$. As $S^m = (((S^{p_1})^{p_2})^{p_3} \cdots)^{p_k}$ repeatedly applying the claim gives S^m is a root of f. So $f(x) = \Phi_n(x)$ and so $\Phi_n(x)$ is irreducible.

Proof of Claim: Suppose instead $g(S^p) = 0$. Thus S is a root of $g(x^p) \Rightarrow g(x^p) = f(x) \cdot h(x)$ for some $h(x) \in \mathbb{Z}[x]$. Let's look in $\mathbb{F}_p[x]$:

1. $x^n - 1$ is separable as $nx^{n-1} \not\equiv 0$ in $\mathbb{F}_p[x]$. So $\Phi_n(x)$ has distinct roots.
(2) The Frobenius map $\overline{F}_p : \overline{F}_p \to \overline{F}_p$ is the identity, since $a^p = a$ for all $a \in \overline{F}_p$ as discussed last time. Hence $\overline{g}(x^p) = (\overline{g}(x))^p$ for all $\overline{g} \in \overline{F}_p[x]$.

(3) As $\overline{g}(x)^p = \overline{f}(x)\overline{h}(x)$, we see \overline{g} and \overline{h} have a common root.

But then by (3) the poly $\overline{\Phi}_n = \overline{g}^{\frac{1}{p}}$ has a multiple root, a contradiction.

Thm: $m \in \mathbb{Z}_{>0}$. There are infinitely many primes $p \equiv 1 \mod m$, i.e. $p = cm + 1$.

[Special case of Dirichlet's Thm on Primes in Arithmetic Progressions.]

Proof: Consider $\Phi_m(a)$ for $a \in \mathbb{Z}_{>0}$. Then

1. There are infinitely many primes which divide some $\Phi_m(a)$.

2. Any $p \mid \Phi_m(a)$ with $p \nmid m$ has $p \equiv 1 \mod m$.
(1) is true for all monic polys in \(\mathbb{Z}[x] \), so will focus on (2).

In \(\mathbb{F}_p \), have \(a^m - 1 = \prod_{d \mid m, d < m} \Phi_d(a) = 0 \)

Claim: \(a \) has order \(m \) in \(\mathbb{F}_p^x \).

Pf of Claim: Suppose \(a^d = 1 \) for \(d < m \). Now \(d \mid m \) and so \(a \) is a root of some \(\Phi_d \) for \(d \mid d \). But then \(x^m - 1 \) has a multiple root, a contradiction as \(m x^{m-1} \neq 0 \) in \(\mathbb{F}_p[x] \). So \(a \) has order \(m \) in \(\mathbb{F}_p^x \).

Pf of (2): As \(a \) has order \(m \), we have \(m \mid |\mathbb{F}_p^x| = p - 1 \) \(\Rightarrow p = cm + 1 \), as needed.

Pf of (1): More gen, let \(f(x) \in \mathbb{Z}[x] \) be monic.
Suppose \(\{ f(a) \mid a \in \mathbb{N} \} \) have only finitely many prime divisors \(p_1, \ldots, p_k \). Choose a \(\alpha \) so that \(f(\alpha) = c \neq 0 \).
Consider
\[g(x) = C^{-1} f(a + C p_1 \cdots p_k x) \]
\[n = \deg f \]
\[= C^{-1} \left(f(a) + f'(a) cy + \frac{f''(a)}{2} c^2 y^2 + \cdots + \frac{f^{(n)}(a)}{n!} c^n y^n \right) \]
\[= 1 + f'(a)y + \frac{f''(a)}{2} c^2 y^2 + \cdots + \frac{f^{(n)}(a)}{n!} c^n y^n \]
which is in \(\mathbb{Z}[x] \).

For any \(b \), have \(g(b) \equiv 1 \mod p_1 \cdots p_k \).

Pick \(b \) large enough so that \(|g(b)| > 1 \).

Let \(p \) be any prime factor of \(g(b) \).

Then \(p \neq p_i \) for all \(i \) and \(p | f(a + C p_1 \cdots p_k b) \).