Lecture 9: Algebraic extensions

Last time:

Thm. \(K = F(\alpha) \). If \([K:F] < \infty\), then \(\exists \) an
infinite \(\text{poly} \) \(p(x) \in F[x] \) with \(p(\alpha) = 0 \) and
\(K \cong F[x]/(p(x)) \). If \([K:F] = \infty\), then \(K \cong F(x) \),
the field of rational funs in \(x \).

Consider \(K/F \) and \(\alpha \in K \).

Algebraic: \(\exists \) nonzero \(p(x) \in F[x] \) with \(p(\alpha) = 0 \).
Trancendental: not algebraic.

Ex: \(\mathbb{R}/\mathbb{Q} \)
Alg: \(\sqrt{2}, \sqrt{2} + \sqrt{5}, \sqrt[3]{2} + 19, \ldots \)
Tran: \(\pi, e, e^\pi, e^{i\pi}, \ldots \) [most elts of \(\mathbb{R} \) by cardinality]

Prop: \(\alpha \in K \) algebraic over \(F \). There is a unique mono-
inided \(p \in F[x] \) with \(p(\alpha) = 0 \). A \(\text{poly} f \in F[x] \) has \(f(\alpha) = 0 \)
iff \(p \) divides \(f \) in \(F[x] \).

Ex: \(\sqrt{2} \) over \(\mathbb{Q} \): \(p(x) = x^2 - 2 \) Now \(\sqrt{2} \) is also a root of

\[f(x) = x^3 + x^2 - 2x - 2 = (x+1)(x^2-2) \]
Proof: Let $I = \{ f(x) \in F[x] \mid f(\alpha) = 0 \}$. As I is an ideal in the PID $F[x]$, have $I = (p(x))$ where we can take p to be monic. Moreover, p must be irreducible, as otherwise some proper factor is in I. □

The poly $p(x)$ is called the minimal poly. of α over F, and is denoted $m_{\alpha,F}(x)$. By last time,

\[
F(\alpha) \cong F[x]/(m_{\alpha,F}(x))
\]

Def: K/F is algebraic if every $\alpha \in K$ is algebraic over F.

Prop: If $[K:F] = n < \infty$, then K/F is algebraic.

Pf: Given $\alpha \in K$ we know 1, α, α^2, ..., α^n are F-linearly dependent, and so get $f \in F[x]$ with $f(\alpha) = 0$. □

Ex: $K = \mathbb{Q}(\{\sqrt{n} \mid n \in \mathbb{Z}_{>0}\}) \subseteq \mathbb{R}$

Now each $\sqrt{2}$ is alg over \mathbb{Q} as it's a root of $x^2 - 2$.

Moreover K/\mathbb{Q} is algebraic: for example

\[
\frac{3\sqrt{2} + 5\sqrt{2}}{13 + 9\sqrt{2} + 17\sqrt{2}}
\]

is algebraic/\mathbb{Q} as it lives in $\mathbb{Q}(60\sqrt{2})$ and $[\mathbb{Q}(60\sqrt{2}) : \mathbb{Q}] = 60$. [Same reasoning works in gen.]
Now \(m \sqrt{2}, Q(x) \) is actually \(x^n - 2 \) since it is irreducible in \(\mathbb{Z}[x] \) by Eisenstein's Criterion. So

\[
[K:Q] \geq [Q(\sqrt{2}):Q] = n \implies [K:Q] = \infty.
\]

Ex: \(\overline{Q} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ is algebraic over } Q \} \) \[\text{The set of algebraic numbers}\]

In fact \(\overline{Q} \) is a field, because of

Thm: If \(\alpha, \beta \in K \) are both algebraic over \(F \), then \(F(\alpha, \beta)/F \) is algebraic.

Ex: As \(\sqrt{2} \) and \(\sqrt{5} \) are algebraic, so is \(\sqrt{2} + \sqrt{5}, \sqrt{10}, \ldots \)

Pf: Consider \(F(\alpha, \beta) \). Now \(\beta \) is algebraic over \(F(\alpha) \). So \([F(\alpha, \beta):F(\alpha)] = \deg(m_{\beta,F(\alpha)}(x)) < \infty \).

Let \(\lambda_1, \ldots, \lambda_n \) be an \(F(\alpha) \)-basis for \(F(\alpha, \beta) \), and \(\alpha_1, \ldots, \alpha_m \) an \(F \)-basis for \(F(\alpha) \). Then any element of \(F(\alpha, \beta) \) is an \(F \)-linear combination of the \(\{ \alpha_i \beta_j \} \). Thus \([F(\alpha, \beta):F] \leq n \cdot m < \infty \). So \(F(\alpha, \beta)/F \) is algebraic. \(\square \)
Then: Suppose $F \subseteq K \subseteq L$. Then $[L:F] = [L:K][K:F]$.
[Makes sense even when some degrees are infinite.]

Pf: If $[L:F] < \infty$ then so is

① $[K:F]$ (since K is a subspace of L)
② $[L:K]$ (since an F-basis for L also K-spans L)

So assume $[K:F]$ and $[L:K]$ are both finite.

Let $\alpha_1, \ldots, \alpha_n$ be an F-basis for K.
Let β_1, \ldots, β_m be a K-basis for L.

Then $\delta_{ij} = \alpha_i \beta_j \in L$ are $n \cdot m$ elts which F span L.

Suppose they are F-linearly dependent:

$$\sum_{ij} f_{ij} \alpha_i \beta_j = 0 \text{ with not all } f_{ij} = 0.$$

Then

$$\sum_j \left(\sum_i f_{ij} \alpha_i \right) \beta_j = 0$$

in K, not all 0 since $\{\alpha_i\}$ are an F-basis of K.

contradicting K-linear indep of the $\{\beta_j\}$. So $\{\delta_{ij}\}$

is an F-basis for L and so $[L:F] = n \cdot m$. \(\square\)