Lecture 28: Solving equations by radicals

- \(x^2 + bx + c \) has solutions \(b \pm \sqrt{D} \)
- \(x^3 + px + q \)
 \[A = \sqrt[3]{-\frac{27}{2}q^2 + \frac{3}{2}\sqrt{-3D}}, \quad B = \sqrt[3]{0 - C} \]
 where \(AB = -3p \). [Note \(D = -4p^3 - 27q^2 \) and
 \((AB)^3 = -(3p)^3 \).] Then the roots are
 \[\alpha = \frac{A + B}{3}, \quad \beta = \frac{\sqrt[3]{A} + \sqrt[3]{B}}{3}, \quad \gamma = \frac{\sqrt[3]{A} + \sqrt[3]{B}}{3} \]
- For quartics, there is an even worse formula.

Thm: There is no such formula for poly of degree \(\geq 5 \), i.e. expressions of the roots in terms of only the
 operations: +, \(\times \), \(\div \), \(- \), \(\sqrt{\cdot} \).

Def: \(f(x) \in F(x) \) is solvable by radicals if there
 are fields
 \[F = K_0 \subseteq K_1 \subseteq K_2 \subseteq \ldots \subseteq K_n = K = \text{Splitting field of } f(x) \]
 where \(K_{i+1} = K_i(\alpha_i) \) with \(\alpha_i \) a root of \(x^{n_i} - a_i \).
Every quadratic, cubic, or quartic poly is solv. by radicals.

Thm: K the splitting field for $f(x) \in F[x]$ for $n \geq 5$. If $\text{Gal}(K/F) = S_n$, then $f(x)$ is not solvable by radicals.

[Q: How many know what a solvable group is?]

Ex: $f(x) = x^5 - 6x + 3 \in \mathbb{Q}[x]$ is irreducible. Set $G = \text{Gal}(K/F)$ where K is the splitting field.

Claim $G = S_5$

As f is irreducible, $5 \mid 161 = [K: \mathbb{Q}]$. By Sylow, G has an elt of order 5, and so G contains a 5 cycle. Now f has 3 real roots $\alpha_1, \alpha_2, \alpha_3$ and 2 roots α_4, α_5 in $\mathbb{C} \setminus \mathbb{R}$ (N.B. that $f'(x) = 5x^4 - 6$ has only two real roots, α_4, α_5).

Thus $T = \frac{\text{restriction of } \mathbb{Z} \to \mathbb{Z}}{\mathbb{Z}}$ in G corresponds to the permutation (45). As G contains a 5-cycle and a transposition, it must be S_5.

\[f(x) \]
Def: A finite group is **solvable** if

\[\{1\} = G_5 \triangleleft G_4 \triangleleft \cdots \triangleleft G_2 \triangleleft G_1 \triangleleft G_0 = G \]

where \(G_i / G_{i+1} \) is cyclic.

Ex:
- Cyclic groups \(C_n \):
 - Abelian groups. E.g. \(G = C_2 \times C_4 \times C_8 \) where we can take

\[\{1\} \triangleleft C_2 \times \{1\} \times \{1\} \triangleleft C_2 \times C_4 \times \{1\} \triangleleft G \]

\(G_3 \quad G_2 \quad G_1 \quad G_0 \)

since \(G_0 / G_1 \cong C_8 \), \(G_1 / G_2 \cong C_4 \), \(G_2 / G_3 \cong C_2 \).

- \(D_{2n} \) since have

\[1 \triangleleft C_n \triangleleft D_{2n} \]

subgrp of rotations

- \(B = \{(x,z) \mid x, y \in \mathbb{F}_p^x, z \in \mathbb{F}_p\} \) [on HW!]

- Any gp with \(|G| = p^n \) (DF chap 6.1)

- \(S_4 \).
Non-Ex: \(S_n \) for \(n \geq 5 \).

- Any \(G \) which is simple but not cyclic.

 \[\text{E.g. } G = A_n \text{ for } n \geq 5 \]

 \[G = \text{PSL}_2 \mathbb{F}_p \text{ for } |p| \geq 4. \]

Thm: \(f(x) \in F[x] \) is solvable by radicals \(\iff \text{Gal}(K/F) \) is solvable.

Cor: \(\text{Gal}(K/F) = S_n \Rightarrow \) not solvable by radicals.

Basic Facts:

1. If \(H \leq G \) and \(G \) is solvable, then so is \(H \).
2. If \(H \triangleleft G \) with \(H \) and \(G/H \) solvable, then so is \(G \).

[Cor of 2: \(A_n \) not solvable \(\Rightarrow \) \(S_n \) not solvable.]

Pf for 1: Take \(H_i = H \cap G_i \). Then \(H_{i+1} \triangleleft H_i \), and \(H_{i+1}/H_i \) is isom. to a subgp of \(G_{i+1}/G_i \) and hence is cyclic.
Proof: Let H_i be the subgroups for H, and Q_i the subgroups for $Q = G/E$. If $\pi: G \to Q$ is the quotient map, then

$$1 = H_S \triangleleft H_{S-1} \triangleleft \cdots \triangleleft H_0 \triangleleft \pi^{-1}(Q_r) \triangleleft \cdots \triangleleft \pi^{-1}(Q_1) \triangleleft G$$

$$H = \pi^{-1}(Q) = \pi^{-1}(Q_r)$$

shows that G is solvable. \qed

Examples where $\text{Gal}(K/F)$ is solvable:

1. $F(\sqrt[n]{D})$

 Degree is $\varphi(n)$.

2. Cyclotomic Fields: $K = \mathbb{Q}(\zeta_n)$.

Proof: K is the splitting field of $x^n - 1$, hence Galors.

Consider

$$\left(\mathbb{Z}/n\mathbb{Z}\right)^x \longrightarrow \text{Gal}(K/F)$$

$$a \longmapsto (\sigma_a : S_n \to S_n)$$

This is a homomorphism as $\sigma_{ab}(S_n) = S_n^{ab}$

$$(S_n^b)^a = \sigma_a(S_n^b(S_n)) = S_n^{ab}.$$
This is clearly injective, and is hence surjective as \(|\text{Gal}(K/\mathbb{Q})| = [K: \mathbb{Q}] = \varphi(n) \)
and so the groups have the same numbers of elts.

Note: While \(\text{Gal}(\mathbb{Q}^{5n}/\mathbb{Q}) \) is abelian, it may not be cyclic, e.g. \((\mathbb{Z}/8\mathbb{Z})^ \cong \text{Klein 4-gp}. \)