Lecture 39:

Ex from last time: \(V(y - x^2) = V \leq C^2 \)

Consider \(h: V \rightarrow \{y\text{-axis}\} \), i.e. \(h(x, y) = y \)

in \(C[V] \). Given a ring homomorphism \(h^*: C[t] \rightarrow C[V] \)

by \(h^*(f(t)) = f(h(x, y)) = f(y) \). So \(h^*(t) = y \).

Get a 1-1 field homomorphism \(h^*: C(t) \rightarrow C(V) \)

Set \(F = h^*(C(t)) = C(y) \) and \(K = C(V) \).

The field extension \(K/F \) is

1. Simple as \(K = F(x) \).
2. Algebraic as \(x \) is a root of \(z^2 - y \in F[z] \).
3. \(z^2 - y \) is irreducible in \(F[z] \) by Eisenstein with \(R = C[y], I = (y) \).

So
\[
K = \frac{F[z]}{(z^2 - y)} = F(\sqrt{y}).
\]

Fun Fact: As abstract fields, \(K \cong F \). Specifically, if we project onto the \(x \)-axis instead by
\[g(x, y) = x, \text{ we get } C[t] \rightarrow C[V] \text{ which } \]
\[t \rightarrow x \]
is onto since \(y = x^2 \) in \(C[V] \). Thus we get an \underline{isomorphism} of fields
\[C(t) \rightarrow C(V). \]

Not as weird as it seems: Note \(C(t^2) \subseteq C(t) \)
but \(C(t) \rightarrow C(t^2) \) is an isom.

Same reasoning shows in general:

\textbf{Thm}: \(V = V(f) \subseteq C^2 \) an \underline{irreducible} plane curve.
Then \(C(V) \) is a finite extension of \(C(t) \).

This has a partial converse:

\textbf{Thm}: Suppose \(K \) is a finite extension of \(C(t) \).
Then \(\exists \) an \underline{irreducible smooth curve} \(V \subseteq C^n \)
where \(C(V) = K \).

[Such fields are called \underline{function fields}.]
Back to the example: K/F is Galois with group $G = \mathbb{Z}/2\mathbb{Z}$ whose gen sends $x = \sqrt{y} \mapsto -x = -\sqrt{y}$.

This corresponds to a symmetry of V:

Goal: Given a finite group G, build $K/C(t)$ with Galois group G.

Outline: [Reverse the above.]

1. Given G, find a curve V (in \mathbb{C}^n or $\mathbb{P}_\mathbb{C}^n$) where G acts as a group of symmetries of V.

2. Each $\sigma \in G$ gives an automorphism of $C(V)$. [Think of $C(V)$ as functions on V]

3. Identify $C(V)_G$ with $C(V/\sigma)$ where V/σ is the quotient, which is an alg. curve.

4. Do 1 so that $V/\sigma = \mathbb{P}_\mathbb{C}$ and hence $C(V/\sigma) = C(t)$. Thus we have an extension $C(V)/C(t)$ with Galois group G.
Thinking about \(\mathbb{C} \):

\[
\mathbb{C} = \mathbb{R}^2 \times \mathbb{R}^2
\]

Back to example:

Symmetry: \(x \rightarrow -x \)

\[
V \xrightarrow{h} \mathbb{C} \\
(x, y) \rightarrow y
\]

If we identify \(V \) with \(\mathbb{C} \) by projection onto the \(x \)-axis, the map \(h \) becomes \(\mathbb{C} \rightarrow \mathbb{C} \)

\[
z \mapsto z^2 \text{ for } z \in \mathbb{C} \]

\[
\infty \mapsto \infty
\]

Let \(\overline{V} = \mathbb{P}^2_C \) be the con. proj. curve. Have \(\overline{V} = \mathbb{P}^1_C \). We want to consider the conic.

map \(\overline{h}: \overline{V} = \mathbb{P}^1_C \rightarrow \mathbb{P}^1_C \)

\[
z \mapsto z^2 \text{ for } z \in \mathbb{C} \]

\[
\infty \mapsto \infty
\]
This is a polynomial map since $\mathbb{P}^1_\mathbb{C} \to \mathbb{P}^1_\mathbb{C}$

$$(u:v) \mapsto (u^2:v^2)$$

restricts to \mathbb{C}^2 as $u \mapsto u^2$ and sends $\overline{(1:0)} \to (1:0)$. What does it look like? First note \overline{h} sends

$(u:v)$ and $(-u:v)$ to the same pt. In pictures

Map on the equator looks like

$z \mapsto -z$

rotate by π

Compare:

$\mathbb{C} \to \mathbb{C}$

$z \mapsto z^2$

$z = re^{i\theta} \mapsto r^2e^{i2\theta}$
This is like a cone, but there is too much angle around the cone pt.

On \mathbb{P}_C^1, have

It is an example of a braneheel cover: a map that's locally 1-1 except at a few points where it looks like $\mathbb{Z} \to \mathbb{Z}$.