Lecture 37:

Last time: Elliptic Curves

\[C = V_\mathbb{P}^2(y^2 - \chi(x-\alpha)(x-\beta)) \]

which has a group law

Have \(\pi: C \to \mathbb{P}^1 \) which is projection

\((x:y:z) \mapsto (x:z)\)

onto the \(x \)-axis. This is 2-to-1, except for \(\{0, \alpha, \beta, \infty\} \) which have only two preimages.

Fact: \(C = \quad \) and \(\pi: \cdots \to \cdots \)

is the quotient of \(C \) by \(\pi \); with respect to the group law, this map is \(x \mapsto -x \).

Plausibility Arguments:

(a) \(S^1 \times S^1 \) is a group since \(S^1 \leq (C \setminus \{0\}, \times) \)

(b) \(\pi \) is locally a homeomorphism except at \((0,0), (\alpha,0), (\beta,0)\) and \(\infty = (0:1:0)\). This is called a branched cover, and it turns out the above is the only one with this data.
Topology of curves in \mathbb{P}_C^2:

$V = V(f)$ where f = homogenous poly in $\mathbb{C}[x, y, z]$. with V smooth and irreducible.

So far, we've seen:

1. If linear, i.e. V is a line, which are all the same by HW. Moreover
 \[V = V(y) = (x - \text{axis} + (1:0:0) \text{ at } \infty) = \mathbb{P}_C^1 = \bigcirc \]

2. If quadratic, i.e. V a conic.
 \[V = \mathbb{P}_C^1 = \bigcirc \]

3. If cubic, i.e. V = elliptic curve = \bigcirc. Has a group law.

In general, V is a compact surface, namely one of:

\[\begin{align*}
& g = 0 \quad g = 1 \quad g = 2 \quad g = 3 \ldots \\
& \bigcirc \quad \bigcirc \quad \bigcirc \quad \bigcirc \\
\end{align*} \]
g is called the genus of V. While this is
clear over \mathbb{C}, there are important consequences for $k=\mathbb{Q}$.

Ex: Fermat's Last Thm: When $n \geq 3$

$$\mathbb{P}^2_\mathbb{Q}(x^n + y^n - z^n) = \emptyset.$$

Suppose $f \in \mathbb{Q}[x,y,z]$ is homogeneous. Consider

$$(V_\mathbb{Q} = V_{\mathbb{P}^2_\mathbb{Q}}(f)) \subseteq (V_\mathbb{C} = V_{\mathbb{P}^2_\mathbb{C}}(f))$$

Amazing fact: How many points $V_\mathbb{Q}$ has depends on the genus of $V_\mathbb{C}$!
Hyperbolic Geometry

Euclidean Torus

Euclidean Torus

Uniform up to scale

Random affine

Geometry of V

Symmetrics of V

\[a \rightarrow \frac{c \cdot z + d}{a \cdot z + b} \]

\[\mathbb{P}^{2}_{D} \]

\[x^2 + y^2 = z^2 \]

\[\text{Pro or } \phi \]

\[\text{or } \phi \]

\[\text{of } \phi \]

\[\text{and no further} \]

\[\Theta \]

\[\Theta \]

\[\text{on a move} \]

\[\text{and no further} \]

\[\text{C} \]

\[\text{F} \]

\[\text{G} \]

\[\text{H} \]

\[\text{I} \]

\[\text{J} \]

\[\text{K} \]

\[\text{L} \]

\[\text{M} \]

\[\text{N} \]

\[\text{O} \]

\[\text{P} \]

\[\text{Q} \]

\[\text{R} \]

\[\text{S} \]

\[\text{T} \]

\[\text{U} \]

\[\text{V} \]

\[\text{W} \]

\[\text{X} \]

\[\text{Y} \]

\[\text{Z} \]
Goal:

Thm: G a finite gp. Then \exists a Galois extension $K/C(t)$ with group G.

First, we need to associate a field to a variety somehow...

V alg. variety $\subseteq \mathbb{A}^n$ [affine variety]

$k[V] = \{ f: V \rightarrow k \mid f = \text{rest of poly} \}$

$= \mathbb{k}[x_1, \ldots, x_n] / \mathcal{I}(V)$

If V is irreducible, then $k[V]$ is an integral domain. In this case, the function field of V, denoted $k(V)$, is the field of fractions of $k[V]$.

An elt of $k(V)$ is called a rational function.
and has the form

\[f = \frac{g}{h} \text{ for } g, h \in \mathbb{C}[x_1, \ldots, x_n] \]

Ex. Let \(k = \mathbb{C}, \ V = \mathbb{C} \). Then \(\mathbb{C}[V] = \mathbb{C}[t] \)

and \(\mathbb{C}(V) = \text{rat'ns in } t = \mathbb{C}(t) \) \[\text{[Note connection to goal!]} \]

\[f = c \frac{(t-a_1) \cdots (t-a_k)}{(t-b_1) \cdots (t-b_k)} \quad \text{no } a_i = b_j, \ c \in \mathbb{C}. \]

Not quite a function \(f : V \to \mathbb{C} \) as not defined at the \(b_i \).

Def. \(f \in \mathbb{C}(V) \) is regular at \(p \in V \) if it has an expression \(f = \frac{g}{h} \) where \(h(p) \neq 0 \).

Set \(\text{dom}(f) = \{ p \in V \mid f \text{ regular at } p \} \)

Ex. For \(f \) as above, \(\text{dom}(f) = \mathbb{C} \setminus \{ b_1, \ldots, b_k \} \)
Ex: \(V = V(xw - yz) \subseteq k^4 \), \(f = \frac{x}{y} \in k(V) \).

As \(xw = yz \) in \(k[V] \), another expression for \(f \) is \(\frac{z}{w} \). So \(\text{dom}(f) = \{ \text{all pts of } V \text{ with } y \neq 0 \text{ or } w \neq 0 \} \).

Underlying point: \(k[V] \) is not a U.F.D.