
Webpage: http://dunfield.info/418
Office hours: Mondays and Tuesdays from 2:30–3:30 and by appointment.

1. Let K/F be an algebraic extension. Suppose R is a subring contained in K which contains F. Prove that R is actually a subfield of K.

2. Prove that $\alpha = \cos(2\pi/5)$ is a constructable number. Use this to show that the regular 5-gon is constructable by straightedge and compass.

3. Find the splitting field K of $x^4 - 2$ over \mathbb{Q}. What is $[K: \mathbb{Q}]$?

4. Find the splitting field K of $x^4 + x^2 + 1$ over \mathbb{Q}. What is $[K: \mathbb{Q}]$?

5. Suppose K/F is the splitting field for a polynomial $f(x) \in F[x]$. Let $g(x) \in F[x]$ be irreducible. Show that if g has a root in K then it splits completely in $K[x]$.