Lecture 14: Poincaré Duality via triangulations.

Cap Product: \(H_k(X) \times H^l(X) \to H_{k-l}(X) \) for \(l \leq k \).

\(\sigma : \Delta^k \to X \quad \phi \in C^l(X) \)

\(\sigma \wedge \phi = \phi(\sigma |_{[v_0, \ldots, v_k]}) \sigma_{[v_k, \ldots, v_n]} \)

Poincaré Duality: \(M \) is \(R \)-orientable, \([M] \in H^n(M)\) a generator. Then \(D : H^k(M) \to H_{n-k}(M) \)

\(\phi \mapsto [M] \wedge \phi \)

is an isomorphism.

[Will give two proofs... starting with one that Poincaré would recognize...]

Let \(M \) be a closed \(n \)-manifold with a triangulation \(T \).

Dual cell decomposition \(\hat{T} \)

- **k-simplex** in \(T \)
- **n-k cell** in \(\hat{T} \)

Reverses inclusion relations

\(\sigma_0 < \sigma_1 \Rightarrow D(\sigma_0) > D(\sigma_1) \)

is a sub-simplex/cell
In the end, we'll get an isomorphism
\[
\begin{array}{ccc}
\text{cohomology complex of} & \Rightarrow & \text{homology complex w.r.t. } D_*
\end{array}
\]

of chain complexes, proving Poincaré Duality.

Consider a simplex
\[
\Delta = [v_0, v_1, \ldots, v_n] \subseteq \mathbb{R}^m
\]
The barycenter of \(\Delta \) is \(\hat{\Delta} = \frac{1}{n+1} \sum v_i \)
The barycentric subdivision \(sd(\Delta) \) of \(\Delta \) is
\[
\Delta = \bigcup \left\{ [\hat{\Delta}, w_0, \ldots, w_{n-1}] \mid \text{is a simplex in } sd(\partial \Delta) \right\}
\]
\[
sd(\Delta) =
\]
Can also do this to a \(\Delta \)-complex!
A Δ-complex X is simplicial if any subset $\{v_0, \ldots, v_n\}$ of $X^{(0)}$ is the vertices of at most one n-cell in X:

Yes:

No:

[Go back to torus exp.]

Lemma: Any Δ complex can be made simplicial by subdividing twice.

[A simplicial Δ-complex is more usually called]

a simplicial complex.

Let T be a simplicial complex structure on M^n consisting of Δ^n's glued along faces. Each simplex σ in $sd(T)$ has vertices which we order $[\hat{\alpha}_{i_1}, \hat{\alpha}_{i_2}, \ldots, \hat{\alpha}_{i_k}]$. Here, the "last vertex" $\hat{\alpha}_{i_1} > \hat{\alpha}_{i_2} > \ldots > \hat{\alpha}_{i_k}$ is the barycenter of the lowest dimension simplex involved.

For σ in T define

$D(\sigma) = \bigcup \{ \text{int}(\alpha) \mid \alpha \leq sd(T) \text{ with } \sigma \text{ as the last vertex} \}$
\(\tilde{D}(6) = \text{closure of } D(6) \)
\[= \bigcup \{ x \in \text{sd}(J) \mid \text{last vertex} \in \hat{6} \} \]
\(\hat{D}(6) = \tilde{D}(6) - D(6) \)

Lemma: @ The \(D(6) \) are disjoint and their union is \(M \)

\(\circ \) \(\tilde{D}(6) \) is a subcomplex of \(\text{sd}(J) \) of dimension \(n - k \) where \(|6| = k \).

\(\circ \) \(\hat{D}(6) = \{ D(\tau) \mid \tau \geq 6 \} \)

Pf: @ Every \(\alpha \) in \(\text{sd}(J) \) has a unique last vertex.

\(\circ \) If \(|6| = k \), then in some \(\Delta^n \) of \(\tilde{J} \)

and \(\alpha \in \tilde{D}(6) \) can have at most \(n - k + 1 \) vertices and hence dimension \(\leq n - k \).

\(\circ \) If \(\alpha \in \tilde{D}(6) - D(6) \), let \(\beta \in \text{sd}(J) \) have \(\hat{6} \) as the last vertex and \(\alpha < \beta \). Since \(\alpha \notin D(6) \), \(\alpha \) has last vertex \(\hat{\tau} \) for some \(\tau \in \tilde{J} \) distinct from \(6 \). From \(\circ \) we get that \(\tau > 6 \), as needed.
Part of $D([v_0, v_1, i])$.

$D([v_0, ..., v_3])$

$D([v_0]) - v_1$

Note that $\overline{D}(s) = \text{Cone over } D(s)$.