Lecture 10: Homology of Manifolds

Def: An n-manifold is a Hausdorff, 2nd countable, topological space where every pt has an open nbhd homeo to \mathbb{R}^n.

[Geometric topology: study of such. For now, H_* and H^*]

$\checkmark = cpt$ and w/o boundary

Poincaré Duality: M a closed, connected n-mfd.

Then $H_k(M; \mathbb{F}_2) \cong H_{n-k}(M; \mathbb{F}_2)$. If M is orientable then $H_k(M; \mathbb{Z}) \cong H^{n-k}(M; \mathbb{Z})$.

[Surprising since being a mfd is a purely local cond.]

Thm. M closed conn n-mfd. Then $H_n(M; \mathbb{Z}) = \mathbb{Z}$ or 0 and $H_n(M; \mathbb{F}_2) = \mathbb{F}_2$.

Def. A triangulation of M is a Δ-complex str consisting of n-simplices w/ their n-1 faces glued in pairs.

Ex: $n = 1$ -- -- -- -- $\to \triangle$
Suppose M has a triangulation. Then $H_n(M; \mathbb{F}_2) = \mathbb{F}_2$.

What about $H_n(M; \mathbb{Z})$?

Either everything fits together: $H_n(M; \mathbb{Z}) = \mathbb{Z}$

or not

$H_n(M; \mathbb{Z}) = 0$

Moebius band
Q: Does every cpt n-mfld have a triangulation?
A: No! [Manolescu 2013] [Every smooth one does, though.

Orientation of \mathbb{R}^n: [preserved under rotations, switch under reflections]

An orient of \mathbb{R}^n at x is a choice of generator in

$$H_n(\mathbb{R}^n, \mathbb{R}^n - \{x\}; \mathbb{Z}) \cong H_{n-1}(\mathbb{R}^n - \{x\}) \cong H_{n-1}(S^{n-1}) \cong \mathbb{Z}$$

long exact seq.

Suppose B open ball with $x \in B$.

$$H_n(\mathbb{R}^n, \mathbb{R}^n - \{x\}) \cong H_n(\mathbb{R}^n, \mathbb{R}^n - B)$$

Local homology of X at A:

$$H_n(X \setminus A) = H_n(X, X \setminus A)$$

If M is an n-mfld

$$H_n(M \setminus x) \cong H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{x\})$$

$\Rightarrow [Q: Excision]

A local orient at $x \in M$ is a choice of gen M_x of $H_n(M \setminus x) \cong \mathbb{Z}$.
Def: An orientation of \(M \) is a map \(x : U \rightarrow M \) such that for open sets \(U \subseteq \mathbb{R}^n \) and bounded open balls \(B \subset U \), there exists \(u \in H_n(M \setminus B) \) such that

\[
H_n(M \setminus x) \leftarrow H_n(M \setminus B) \cong H_n(U \setminus B) \cong \mathbb{Z}
\]

for all \(x \in B \).

If an orientation exists, \(M \) is called orientable.

Thm: \(M \) closed connected \(n \)-mfld. If \(M \) is orientable, then \(H_n(M; \mathbb{Z}) = \mathbb{Z} \) and \(H_n(M; \mathbb{Z}) \to H_n(M \setminus x; \mathbb{Z}) \) is an isomorphism for all \(x \in M \). Otherwise,

\(H_n(M; \mathbb{Z}) = 0 \).

Note: 1) Easy to see that \(\mathbb{Z} \) implies orientability.

Fix a gen \(u \) of \(H_n(M; \mathbb{Z}) \) and set \(M_x = \text{image in } H_n(M \setminus x; \mathbb{Z}) \).

2) Any mfld is \(\mathbb{F}_2 \)-orientable, since

\[
H_n(M \setminus x; \mathbb{F}_2) \cong \mathbb{F}_2 \text{ has a single non-zero element.}
\]