Homotopy Lifting Property: \(p: E \to B \) has H.L.P with respect to \(X \) if given \(g_0: X \to B \) and a lift \(\tilde{g}_0 \) of \(g_0 \) to \(E \) such that \(p \circ \tilde{g}_0 = g_0 \), every homotopy \(\tilde{g}_t: X \times I \to B \) lifts to \(E \) starting at \(\tilde{g}_0 \).

Def: \(p: E \to B \) is a fibration if it has H.L.P with respect to all \(X \).

Ex: \(E = B \times F \), \(p \) projection onto \(B \). If \(\tilde{g}_0: X \to E \) is given by \(\tilde{g}_0(t) = (g_0(t), h(t)) \) then define \(\tilde{g}_t(x) = (g_t(x), h(t)) \).

[Query:] Ex: \(p: E \to B \) a covering space.

[In general, \(E \to B \) is a “twisted product” with fixed fiber \(F \).]
Thm: Suppose $p : E \to B$ is a fibration. Let $b_0 \in B_0$ and $x_0 \in F = p^{-1}(b_0)$. If B is path connected the following is exact

$$
\cdots \to \pi_n(F, x_0) \overset{i_*}{\to} \pi_n(E, x_0) \overset{p_*}{\to} \pi_n(B, b_0) \\
\to \pi_{n-1}(F, x_0) \to \cdots \to \pi_0(F, x_0) \to \pi_0(E, x_0) \to 0.
$$

Key claim: $p_* : \pi_n(E, F, x_0) \to \pi_n(B, b_0, b_0) = \pi_n(B, b_0)$

is an isomorphism.

Combining with the long exact sequence of (E, F), this gives the claim except for the very last 0; i.e. every path comp of E contains a point of F.

Given $e \in E$, join $p(e)$ to b_0 by a path, a lift of this path to one starting at e joins e to some pt in F.

Proof Sketch: p_* onto.
\[f_\sim |_J = \text{const}_{\kappa_0} \]

Extend by H.L.P. to \(D^n \)

\[f \in \pi_n(E,F,b_0) \]

\[F = p^{-1}(b_0) \]

\[p_*[f] = [\tilde{f}] \]

\[p_\sim \]

\(P \) is 1-1: If \(p_\sim [\tilde{f}] = p_\sim [\tilde{g}] \) then use HLP to lift homotopy between \(p_\sim f \) and \(p_\sim g \) to see \([\tilde{f}] = [\tilde{g}] \).

Fiber Bundles: [locally a product]

\[E \rightarrow B \]

is a fiber bundle with fiber \(F \)

if each pt in \(B \) has a nbhd \(U \)

and a homeomorphism \(p^{-1}(U) \rightarrow U \times F \)

when the diagram \(\begin{array}{ccc} p^{-1}(U) & \xrightarrow{h} & U \times F \\ \downarrow \quad \circ \quad \downarrow \quad \text{proj into } U \\ U \end{array} \) commutes.

Fact: Fiber bundle maps are fibrations.
Ex: \(E = B \times F \)

2) Covering space \((F = \text{discrete set})\)

Ex: Möbius band

\[I \to M \to S^1 \]

Notation for fiber bundle

Ex: Hopf bundle: \(S^1 \to S^3 \to S^2 \)

\[S^3 = \left\{ (z_0, z_1) \in \mathbb{C}^2 \mid |z_0|^2 + |z_1|^2 = 1 \right\} \]

\[\mathbb{C}P^1 = \mathbb{C}^2 \setminus \{0\} / \mathbb{C}^* \]

\[[z_0 : z_1] \]

For \(\lambda \in S^1 \subseteq \mathbb{C} \), note \(p(\lambda z_0, \lambda z_1) = p(z_0, z_1) \).

In fact \(p^{-1}(pt) = \text{circle} \), since if \((z_0, z_1) \in S^3 \) and \((\lambda z_0, \lambda z_1) \in S^3 \) then \(|\lambda| = 1\) by \(\star \)
Local triviality: Take $U \subseteq \mathbb{CP}^1$ to be $\{[z_0:1] \mid z_0 \in \mathbb{C} \} \cong \mathbb{C}$.

Define $h : \mathbb{P}^{-1}(U) \rightarrow U \times S^1$ by

$$h([z_0:z_1]) = ([z_0/|z_1|, z_1/|z_1|])$$

This is a homeo since here is the inverse:

$$h^{-1}(z_0:z_1) = \left(\frac{z_0}{\sqrt{1+|z_0|^2}}, \frac{z_1}{\sqrt{1+|z_0|^2}} \right)$$

So diagram commutes.

http://nilesjohnson.net/hopf.html