Lecture 16: Vector fields, integral curves, and flows.

\[\Theta : \mathbb{R} \times M \to M \text{ smooth action} \]
\[(t, m) \mapsto t \cdot m = \Theta_t(m) \]

\[\Theta_t : M \to M \text{ diffeomorphisms with } \Theta_{t_1} \circ \Theta_{t_2} = \Theta_{t_1 + t_2} \]

For \(m \in M \) have a curve \(\Theta^{(m)} : \mathbb{R} \to M \)
\[t \mapsto \Theta_t(m) \]

Infinitesimal generator: \(V \in \mathfrak{X}(M) \)
\[V_m = \frac{d}{dt} \Theta^{(m)} \bigg| _{t=0} = d\Theta \left(\frac{\partial}{\partial t} \right)_{(0, m)} \]

A curve \(\gamma : I \to M \) is an integral curve for \(X \in \mathfrak{X}(M) \) if \(\gamma'(t) = X_{\gamma(t)} \) for all \(t \in I \)

[\(\gamma \) a solution to an ODE on \(M \).]

Ex: Smooth \(\Theta : \mathbb{R} \times M \to M \), \(V \) the infinit gen. Then each \(\Theta^{(m)} \) is an integral curve for \(V \) as follows:
Set \(m' = \Theta^{(m')}(t) \); since \(\Theta^{(m')}(s) = \Theta^{(m)}(s+t) \)
\[\Theta^{(m')}(t) = (\Theta^{(m')})'(0) = V_{m'} = V_{\Theta^{(m)}(t)} \]

Note: R-actions are also called flows.

Does every \(X \in \mathcal{X}(M) \) come from a flow?

No: \(M = \{ x \in \mathbb{R}^2 \mid |x| < 1 \} \)
\[X = \frac{\partial}{\partial x} \]

Integral curve containing \((0,0)\):
\[\gamma : (-1,1) \to M \]
\[\gamma'(t) = \frac{\partial}{\partial x} \quad \checkmark \]

Can't enlarge the domain so can't set \(\Theta^{(0,0)} = \alpha \).

Thm: \(X \in \mathcal{X}(M) \). For each \(m \in M \) there is open interval \(I(m) \) containing 0 and a curve \(\gamma : I(m) \to M \) where:

(a) \(\gamma \) is an integral curve for \(X \) with \(\gamma(0) = m \).

(b) If \(\alpha : J \to M \) is an int curve for \(X \) with \(\alpha(0) = m \)

then \(J \subseteq I(m) \) and \(\alpha = \gamma \big|_{I(m)} \).
Pf: Given \(m \in M \), the existence of an integral curve on some \((-\varepsilon, \varepsilon)\) follows from applying the existence theorem for ODE's in some chart.

Suppose \(\alpha: I \to M \) and \(\beta: I \to M \) are integral curves with \(\alpha(0) = \beta(0) = m \).

Claim: \(\alpha = \beta \) on \(I \cap J \).

[If true then we just define \(\gamma \) by]
[taking \(I(m) = U \) (domain of some \(\xi \))]

Let \(t_0 \in I \cap J \) be such that \(\alpha(t_0) = \beta(t_0) \) but \(\exists t \text{ arb. close to } t_0 \text{ with } \alpha(t) \neq \beta(t) \). In local coor near \(\alpha(t_0) \) have \(\varphi \circ \alpha \)

Contradicts uniqueness of solutions to ODE's.

\(\varphi(\alpha(t_0)) \neq \varphi(\beta(t_0)) \)
Let $X \in \mathfrak{X}(M)$. Define

$$\mathcal{D} = \{(t, m) \in \mathbb{R} \times M \mid t \in I(m)\}$$

and $\Theta : \mathcal{D} \to M$ by $(t, m) \mapsto \gamma_m(t)$, where $\gamma_m : I(m) \to M$ is the int. curve for X where $\gamma_m(0) = m$.

Thm. \mathcal{D} is open in $\mathbb{R} \times M$ and Θ is smooth.

Reason: Smooth dep. of solutions to ODE's on initial conditions.

Complete vector field: $X \in \mathfrak{X}(M)$ where $\mathcal{D} = \mathbb{R} \times M$.

[Precisely those coming from \mathbb{R}-actions]

Thm. If M is compact, then any $X \in \mathfrak{X}(M)$ is complete.

Pf. Cover M with finitely many V_i where each $V_i \subseteq (U_i, \varphi_i)$ and the closure of
\(\phi_i(V_i) \) in \(\mathbb{R}^n \) is opt an \(\leq 0 \).

By ODE theory, \(\exists \varepsilon_i \) so that \(y' = y \) has sol on \((-\varepsilon_i, \varepsilon_i)\)
for all init. cond in \(\phi(V_i) \).

So back on \(M \), any integral curve can be extended by at least time \(\varepsilon = \min \varepsilon_i > 0 \). So \(M \) is complete. \(\Box \)

Thm: Every left-invariant vector field on a Lie gp \(G \) is complete.

Pf: Integral curve exists at \(e \) for some time \(\pm \varepsilon \).
By left invariance this is true at every other \(g \in G \). So the left-inv. v.f. is complete.