Lecture 29: Partitions of Unity

Goal: Define \(\int_M \) where \(\omega \in \Omega^n(M) \) and \(M \) is an \(n \)-manifold.

Def: The support of \(f: M \to \mathbb{R} \) is \(\text{supp } f = \{ p \in M \mid f(p) \neq 0 \} \).

HW #2: Given \(p \in M \) there is a smooth chart \((U, \varphi)\)
about \(p \) and a smooth \(f: M \to [0, 1] \) where

\(a \) \(f = 1 \) on a nbhd of \(p \)

\(b \) \(\text{supp } f \subseteq U \).

Thm: Every smooth \(M^n \) has a countable set of smooth charts \((U_i, \varphi_i)\) with bump functions \(f_i \) so that:

\(a \) \(\bigcup \text{supp } f_i = M \)

\(b \) Any \(p \in M \) is in finitely many \(\text{supp } f_i \).

Cor. Any smooth \(M^n \) has a Riemannian metric.
Pf of Cor: Let \((U_i, \varphi_i, f_i)\) be as in the
then. Define \((g_i)_p : T_p M \times T_p M \to \mathbb{R}\) by
\[
\begin{align*}
g_i(v_p, w_p) &= \begin{cases}
0 & \text{if } p \notin \text{supp } f_i \\
\frac{f(p) g_{\varphi(p)}(d\varphi_i(v_p), d\varphi_i(w_p))}{\text{if } p \in \text{supp } f_i}
\end{cases}
\end{align*}
\]
[Query: Is \(g_i\) a Riemannian metric?]

Not quite a Riemannian metric,
satisfies everything except pos. def;
Do have \(g_i(v_p, v_p) \geq 0\) though.

Define \(g : T_p M \times T_p M\) by
\[
g(v_p, w_p) = \sum_i g_i(v_p, w_p)
\]
which makes sense because of \(\Box\). Its an actual
Riemannian metric since some term in \(g(v_p, v_p)\)
is \(\geq 0\).
Lemma: A smooth M^n is a countable union of compact K_i where $K_i \subseteq \text{Int}(K_{i+1})$.

[Query: What if $M = \mathbb{R}^n$?]

Pf: M is second countable and locally compact. See A.60 in Lee.

Pf of Thm: Let $L_i = K_i \setminus \text{Int}(K_{i-1})$.

By compactness, there exist finitely many $(U_\alpha, p_\alpha, f_\alpha)$ so that

1. Each $U_\alpha \subseteq \text{Int}(K_{i+1}) \setminus K_{i-1}$
2. The support of f_α cover L_i

The union of these as i varies is what we seek; condition 6 holds since the U_α for L_i meet at most L_{i+1} and L_{i-1}.
Thm: Every smooth M^n has a countable set of smooth charts (U_i, φ_i) and $\psi_i \in C^\infty(M)$ where:

1. Any $p \in M$ is infinitely many $\text{supp } \psi_i$
2. $\text{supp } \psi_i \subseteq U_i$
3. For all $p \in M$
 \[\sum_i \psi_i(p) = 1. \]

Pf: Let (U_i, φ_i, f_i) be as in the first time.

Define $f \in C^\infty(M)$ by
\[f(p) = \sum_i f_i(p). \]

[Makes sense by ①]. Since $f(p) > 0$ [by ②] set
\[\psi_i = f_i / f. \] Then $\sum_i \psi_i = 1.$

Motivation: Break $\int_M \omega$ into $\int_M (\sum_i \psi_i) \omega = \sum_i \int_M \psi_i \omega$ and evaluate the latter as $\int_{\varphi(U_i)} (\varphi^{-1})^*(\psi_i \omega)$.