Original goal: Do calculus on things locally like \mathbb{R}^n.

[Derivatives, vector fields, differential forms, Lie bracket, Lie derivatives...]

So far our understanding of manifolds has been based on their local properties. Indeed, the coremost central concepts of this course have been how to define globally objects we understand on \mathbb{R}^n.

New focus: How do we use these tools to understand/distinguish the global topology of manifolds?

\[
\begin{align*}
&\bigcirc \text{ vs. } \bigcirc \bigcirc \bigcirc \text{ vs. } \bigcirc \bigcirc \\
&\text{Showing: } \text{Existence can be easier than non-existence.}
\end{align*}
\]

Ex: $S^1 \times S^1 \subseteq \mathbb{R}^4$ is diffeomorphic to $\{(\sqrt{x^2+y^2}-2)^2+z^2=1\}$

\[
\{(w,v,w,x) \mid w^2+v^2=w^2+x^2=1\}
\]

Ex: S^1 and S^3 have nowhere-vanishing vector fields S^1 and S^3 has infinitesimal gen of mult by e^{it}.

\[
\begin{align*}
C^2 &\rightarrow S^3 \quad \text{C^2} \rightarrow S^3 \\
\end{align*}
\]
Thm: \emptyset and \mathbb{S}^2 are not diffeomorphic.

Thm: Every $x \in \mathcal{X}(\mathbb{S}^2)$ vanishes at at least one pt.

Thm: $D^n = \{ x \in \mathbb{R}^n \mid 1 \times 1 \leq 1 \}$. There does not exist a smooth map $\phi : D^n \to \mathcal{D}^n$ where $f|\partial D^n = \text{id}|\partial D^n$.

[Of course the distinction between existent and non-existence is fuzzy.]

Thm: Suppose $F : D^n \to D^n$ is smooth. Then $\exists \, p \in D$ with $F(p) = p$.

A form $\omega \in \Omega^k(M)$ is closed if $d\omega = 0$; it is exact if $\exists \, \eta \in \Omega^{k-1}$ with $d\eta = \omega$.

Note: Since $d \circ d = 0$ have:

1. On \mathbb{R}^2: let

 $\omega = 2xy \, dx + x^2 \, dy$

 is closed and exact since $\omega = d(x^2y)$.

 The form $w = y \, dx$ is neither closed or exact.
2. Suppose $M \subseteq \mathbb{R}^3$.
\[\Omega^1(M) \leftrightarrow \mathfrak{X}(M) \]
\[w = a \, dx + b \, dy + c \, dz \leftrightarrow a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} + c \frac{\partial}{\partial z} = V \]
\[w \text{ closed } \iff \text{curl} \, V = 0 \]
\[w \text{ exact } \iff \text{grad} \, f \text{ for } f \in C^0(M) \]

Forshadowing: When $M = \mathbb{R}^3$ then closed and exact are equivalent.

3. Suppose M has no boundary. Then $\omega \in \Omega^n(M)$ is closed and orientable.

and if ω is exact then $\int_M \omega = \int_{\partial M} \eta = 0$

If ω is the volume form on S^2, then $\int_{S^2} \omega = 4\pi$ and so ω is not exact.

Suppose $\omega \in \Omega^k(M)$ is closed but not exact. Then so is $\omega + \text{d}\eta$ for every $\eta \in \Omega^{k-1}(M)$.

Note: \{exact\} \subseteq \{closed\} \subseteq \Omega^k(M) are linear subspaces, so can define the k^{th}-deRham cohomology group as
\[H^k(M) = \frac{\{\text{closed}\}}{\{\text{exact}\}} \]

That is, $H^k(M)$ is the set of equiv. classes $[\omega]$ when $\text{d} \omega = 0$ and $[\omega] = [\omega']$ if $\omega - \omega'$ is exact.

Fact: When M iscpt, this actually a finite-dimensional
vector space.

Note if you know about simplicial/singular/cellular cohomology, this is $H^k(M; \mathbb{R})$.

\[H^k(\mathbb{R}^n) = \begin{cases} \mathbb{R} & k > 0 \\ \mathbb{R} & k = 0 \end{cases} \]

Ex: Suppose M is a compact connected orientable n-mfd.

Then $H^n(M) \cong H^0(M) \cong \mathbb{R}$.

Ex:

\[\begin{array}{c|c|c|c|c|c}
\text{Ex} & \mathbb{R}^2 & \mathbb{R}^4 & \mathbb{R}^6 \\
H^1 & 0 & \mathbb{R}^2 & \mathbb{R}^4 & \mathbb{R}^6 \\
\end{array} \]

Basic properties:

1. Set $H^*(M) = \bigoplus_{k=0}^n H^k(M)$. Then $H^*(M)$ is an algebra with the multiplication $[\alpha] \cdot [\beta] = [\alpha \wedge \beta]$.

 Makes sense because $(\alpha + d\eta) \wedge \beta = \alpha \wedge \beta + d\eta \wedge \beta = \alpha \wedge \beta + d(\eta \wedge \beta)$ since $d\beta = 0$; same for other poss. reps of $[\beta]$.

2. If $F: M \to N$ get a map $F^*: H^*(N) \to H^*(M)$ from the associated map $\Sigma^*(N) \to \Sigma^*(M)$ since d and F commute.
3. Cor: If M and N are diffeomorphic, then

$$H^*(M) \cong H^*(N) \quad (\text{as R-algebras}).$$

4. Prop: Suppose M_1, \ldots, M_n are smooth manifolds. Then

$$H^*(\bigotimes_{i=1}^n M_i) \cong \left(\prod_{i=1}^n H^*(M_i) \right).$$

5. Prop: If M^n is connected then $H^0(M) = \mathbb{R}$.

Pf: There are no exact forms since $\Omega^{-1} = 0$. Then A

function $f \in \Omega^0(M)$ has $df = 0$ exactly

when it is constant. The subspace of

constant functions is $\cong \mathbb{R}$. \qed