Thm: \(M \) smooth. There are unique maps \(d: \Omega^k(M) \to \Omega^{k+1}(M) \) satisfying:

1. \(d \) is linear/IR
2. \(\omega \in \Omega^k(M) \) and \(\eta \in \Omega^l(M) \):
 \[
d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta
 \]
3. \(\circ \) \(d \circ d = 0 \)
4. For \(f \in \Omega^0(M) = C^\infty(M) \), the \(df \in \Omega^1(M) \) is the usual differential, i.e. \(df(v_p) = v_p f \).

One reason for \((-1)^k\) in 2: Needed so that

\[
d(\eta \wedge \omega) = (-1)^k \eta \wedge d\omega.
\]

Lie derivatives: \(\nu \in \mathfrak{X}(M) \) and \(\omega \in \Omega^k(M) \).

Define \(\mathcal{L}_\nu \omega \in \Omega^k(M) \) by

\[
(\mathcal{L}_\nu \omega)_p := \left. \frac{d}{dt} \left(\Theta^*_t \omega \right) \right|_{t=0}
\]

in \(\bigwedge^k T_p M \)

where \(\Theta \) is the flow associated to \(\nu \).

Using the proof that \(\mathcal{L}_X Y = [X,Y] \)
this is the same as defining $\mathcal{L}_V \omega$ by the
property that for any $X_1, \ldots, X_k \in \mathcal{X}(M)$ one has

\[
\mathcal{L}_V \omega(X_1, \ldots, X_k) = V(\omega(X_1, \ldots, X_k)) \\
- \omega([V, X_1], X_2, \ldots, X_k) - \cdots \\
- \omega(X_1, X_2, \ldots, [V, X_k])
\]

Prop: $V \in \mathcal{X}(M)$ and $\omega, \eta \in \Omega^*(M)$. Then

\[
\mathcal{L}_V (\omega \wedge \eta) = (\mathcal{L}_V \omega) \wedge \eta + \omega \wedge (\mathcal{L}_V \eta)
\]

[No signs needed here as \mathcal{L}_V doesn't change the]
[degree of the forms, \mathcal{L}_V and d are related!]

Cartan's Magic Formula:

\[
\mathcal{L}_V \omega = V \lrcorner dw + d(V \lrcorner \omega)
\]

Here, $V \lrcorner \eta$ is the \underline{interior product}
defined by

\[
(V \lrcorner \eta)(W_1, \ldots, W_{k-1}) = \eta(V, W_1, \ldots, W_{k-1})
\]

$\in T_p M$
Stokes Thm: Let M be an oriented smooth n-manifold with boundary. If $\omega \in \Omega^n(M)$ is compactly supported, then $\int_M d\omega = \int_{\partial M} \omega$.

Recall: Such an M has charts to open sets in \mathbb{R}^n and $H^n = \{ x \in \mathbb{R}^n \mid x_n > 0 \}$, $\{ x \in H^n \mid x_n = 0 \}$, \mathbb{R}^n. Then $\partial M = \{ p \in M \mid \exists$ smooth (U, φ) with $\varphi(p) \in \partial H^n \}$.

Note ∂M is itself a manifold (with the topology inherited from M) without boundary.

Prop: An orientation of M induces one of ∂M. [In particular, ∂M is orient when M is.]

For $p \in \partial M$, the tangent space T_pM is still \mathbb{R}^n; you can view it as isometric with $T_pH^n = T_{\varphi(p)}\mathbb{R}^n \cong \mathbb{R}^n$. [Alt, its derivations ∂_i smooth fns at p.]
Given \(v \in T_p M \) for \(p \in \partial M \) have one of \(0 \) \(v \in T_p \partial M \) \(0 \) \(v \) inward pointing \(0 \) outward pointing.

Given an orientation of \(M \), orient \(\partial M \) by the following rule. A basis \(b_1, \ldots, b_{n-1} \in T_p \partial M \) is positively oriented if when \(n_p \in T_p M \) is outward pointing, then \(n_p, b_1, \ldots, b_{n-1} \) is a pos. basis for \(T_p M \).

Ex:

![Diagram](image1)

Ex:

![Diagram](image2)

So \(\partial H^n \) gets the standard orient of \(\mathbb{R}^{n-1} \) when \(n \) is even and the opposite orient. when \(n \) is odd.

To prove the prop, have to check that the pointwise orient defined above is locally consistent. But that's clear from the picture for \(H^n \).
Special cases:

1. If \(\partial M = \emptyset \), view \(\int_{\partial M} w \) as 0.

2. If \(\dim M = 1 \), then \(\partial M = \) some points.

 An orient of a point mfld \(p \) is just a sign \(\varepsilon_p = \pm 1 \) and \(\int_{p} f = \varepsilon_p f(p) \).

3. So if \(M = [a, b] \) and \(f \in C^0(M) \) then

 \[\int_{M} df = \int_{a}^{b} f'(t) \, dt = f(b) - f(a) = \int_{\partial M} f \]

[If time remains, blather about how this connects to Math 241]