1. Consider the region R in \mathbb{R}^2 shown below at right. In this problem, you will do a change of coordinates to evaluate:

$$\iint_R x - 2y \, dA$$

(a) Find a linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ which takes the unit square S to R.

Write you answer both as a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and as $T(u, v) = (au + bv, cu + dv)$, and check your answer with the instructor.

SOLUTION:

$T(u, v) = (2u + v, u + 3v)$. In matrix form,

$$\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$$

(b) Compute $\iint_R x - 2y \, dA$ by relating it to an integral over S and evaluating that. Check your answer with the instructor.

SOLUTION:

The Jacobian of T is

$$\det \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} = 6 - 1 = 5$$

So

$$\iint_R x - 2y \, dA = \iint_S [(2u + v) - 2(u + 3v)]5 \, dA$$

$$= \int_0^1 \int_0^1 -25v \, du \, dv = \left[\frac{-25v^2}{2} \right]_0^1 = -\frac{25}{2}$$
Another simple type of transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a translation, which has the general form $T(u, v) = (u + a, v + b)$ for a fixed a and b.

(a) If T is a translation, what is its Jacobian matrix? How does it distort area?

SOLUTION:

If $T(u, v) = (u + a, v + b)$ where a and b are constants, then the Jacobian is

$$ det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1. $$

So T does not distort areas.

(b) Consider the region $S = \{u^2 + v^2 \leq 1\}$ in \mathbb{R}^2 with coordinates (u, v), and the region $R = \{(x-2)^2 + (y-1)^2 \leq 1\}$ in \mathbb{R}^2 with coordinates (x, y).

Make separate sketches of S and R.

SOLUTION:

![Sketch of regions S and R](image)

(c) Find a translation T where $T(S) = R$.

SOLUTION:

$T(u, v) = (u + 2, v + 1)$

(d) Use T to reduce $\iint_R x \, dA$ to an integral over S, and then evaluate that new integral using polar coordinates.

SOLUTION:

The Jacobian of T is just 1, as noted in part (a). So we have

$$ \iint_R x \, dA = \iint_S (u + 2) \, dA $$

Converting the second integral above to polar we have

$$ \iint_S (u + 2) \, dA = \int_0^{2\pi} \int_0^1 (r \cos \theta + 2) r \, dr \, d\theta = \int_0^{2\pi} \left[\frac{r^3 \cos \theta}{3} \right]_0^1 d\theta + 2\pi \left[\frac{r^2}{2} \right]_0^1 $$
\[
\int_0^{2\pi} \cos \theta \, d\theta + 2\pi = 1/3 [\sin \theta]_0^{2\pi} + 2\pi = 2\pi
\]

3. Consider the region \(R \) shown below. Here the curved left side is given by \(x = y - y^2 \). In this problem, you will find a transformation \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) which takes the unit square \(S = [0, 1] \times [0, 1] \) to \(R \).

![Image of the region R](image)

(a) As a warm up, find a transformation that takes \(S \) to the rectangle \([0, 2] \times [0, 1]\) which contains \(R \).

SOLUTION:

\[L(u, v) = (2u, v) \]

(b) Returning to the problem of finding \(T \) taking \(S \) to \(R \), come up with formulas for \(T(u, 0) \), \(T(u, 1) \), \(T(0, v) \), and \(T(1, v) \). Hint: For three of these, use your answer in part (a).

SOLUTION:

\[T(u, 0) = (2u, 0) \]
\[T(u, 1) = (2u, 1) \]
\[T(1, v) = (2, v) \]
\[T(0, v) = (v - v^2, v) \]

(c) Now extend your answer in (b) to the needed transformation \(T \). Hint: Try “filling in” between \(T(0, v) \) and \(T(1, v) \) with a straight line.

SOLUTION:

\[T(u, v) = (2u + v(1 - v)(1 - u), v) \]

(d) Compute the area of \(R \) in two ways, once using \(T \) to change coordinates and once directly.

SOLUTION:

To change coordinates we compute the Jacobian

\[
J(T) = \det \begin{pmatrix}
2 - v(1 - v) & (1 - 2v)(1 - u) \\
0 & 1
\end{pmatrix} = 2 - v(1 - v)
\]

So we have the area of \(R \) given by

\[
\iiint_R \, dxdy = \int_0^1 \int_0^1 2 - v(1 - v) \, du \, dv = 11/6
\]
Computing directly we have the area of R given by
\[\int_{0}^{1} 2 - (y - y^2) \, dy = \frac{11}{6} \]

4. If you get this far, evaluate the integrals in Problems 1 and 2 directly, without doing a change of coordinates. It's a fun-filled task…

SOLUTION:

For the integral in problem one, use the order $dy \, dx$. We need to split the double integral into three parts. The result is
\[
\iint_R x - 2y \, dA = \int_1^3 \int_{x/2}^{x} x - 2y \, dy \, dx + \int_1^{x/2+5/2} \int_{x/2}^{x} x - 2y \, dy \, dx + \int_2^{x/2+5/2} \int_{3x-5}^{x} x - 2y \, dy \, dx
\]
Evaluating this is not difficult but it is tedious. We leave it to the interested student. You should get $-\frac{25}{2}$.

For the integral in problem two, again use the order $dy \, dx$. We just need one double integral.
\[
\iint_R x \, dA = \int_1^3 \int_{1+\sqrt{1-(x-2)^2}}^{1-\sqrt{1-(x-2)^2}} x \, dy \, dx = \int_1^3 2x \sqrt{1-(x-2)^2} \, dx
\]
This integral can be evaluated by making the substitution $x - 2 = \sin u$, yielding the integral
\[
\int_{-\pi/2}^{\pi/2} (2 \sin u + 4) \cos^2 u \, du
\]
Now split this in two pieces as
\[
\int_{-\pi/2}^{\pi/2} 2 \sin u \cos^2 u \, du + \int_{-\pi/2}^{\pi/2} 4 \cos^2 u \, du
\]
The first is the integral of an odd function over an interval which is symmetric about the y axis so it is 0. The second can be evaluated by using the trig identity $\cos^2 u = (1 + \cos 2u)/2$. This gives
\[
\int_{-\pi/2}^{\pi/2} 4 \cos^2 u \, du = \int_{-\pi/2}^{\pi/2} 4(1 + \cos 2u)/2 \, du = 2\pi.
\]