1. Let \(\mathbf{v}, \mathbf{a}, \) and \(\mathbf{b} \) be the vectors (in the plane of the paper) drawn at right, all of which have length 1. Let \(\mathbf{w} \) be a vector of length two pointing directly out of the paper. Which of the following vectors is \(\mathbf{v} \times \mathbf{w} \)? (2 points)

\[
\begin{array}{cccccccc}
-2\mathbf{b} & -\mathbf{b} & \mathbf{b} & 2\mathbf{b} & (0,0,0) & -2\mathbf{a} & -\mathbf{a} & \mathbf{a} & 2\mathbf{a}
\end{array}
\]

2. A function \(u: \mathbb{R}^2 \to \mathbb{R} \) is harmonic if it satisfies Laplace's equation: \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \). Check the box next to the unique graph below that corresponds to a harmonic function. (2 points)

3. Let \(f \) be a function from \(\mathbb{R}^2 \) to \(\mathbb{R} \). Suppose that \(f(x, y) \to 3 \) as \((x, y)\) approaches \((0,1)\) along every line of the form \(y = kx + 1 \). What can you say about the limit \(\lim_{(x,y)\to(0,1)} f(x, y) \)? Check the box next to the correct statement. (2 points)

- It exists and is equal to 3.
- We cannot determine if the limit exists, but if it does, the limit is 3.
- It does not exist.

4. Suppose we know the following data about \(g: \mathbb{R}^3 \to \mathbb{R} \).

<table>
<thead>
<tr>
<th>((x, y, z))</th>
<th>(g(x, y, z))</th>
<th>(g_x(x, y, z))</th>
<th>(g_y(x, y, z))</th>
<th>(g_z(x, y, z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((3,3,1))</td>
<td>30</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>((0.5,0.1,0))</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Circle the best estimate for \(g(3.5,3.1,1) \): 30.6, 31.0, 32.6, 33.4, 34.1 (2 points)

\[
g(3.5,3.1,1) \approx g(3,3,1) + g_x(3,3,1) \Delta x + g_y(3,3,1) \Delta y
\]

\[
= 30 + 6 \cdot (0.5) + 4 \cdot (0.1) = 30 + 3 + 0.4 = 33.4
\]
5. Let S be the surface $x^2 + y^2 = -z^2$ shown at right. Let f be a function on \mathbb{R}^3 with continuous partial derivatives such that

\[
\nabla f(0,0,0) = (1,1,3) \quad \nabla f(2,2,-2) = (1,1,3) \\
\nabla f(-2,-2,-2) = (1,1,3) \quad \nabla f(2,-2,2) = (0,0,0)
\]

Circle every point below that can not be the point at which f achieves its minimum value on S. (4 points)

(0,0,0) (2,2,-2) (-2,-2,-2) (2,-2,-2)

6. Let S be the surface parametrized by $r(u,v) = (v \cos u, u, v)$ for $-\pi/2 \leq u \leq \pi/2$ and $-1 \leq v \leq 1$. Check the box next to the picture of S below: (2 points)

7. Let $F(x,y,z) = (e^x, 3x + 2xye^y)$, and let C be the oriented curve at right. Estimate the value of $\int_C F \cdot dr$. (2 points)

-9 -6 -3 0 3 6 9

Scratch Space

$5. \quad \text{Set } g = x^2 + y^2 + z^2 \text{ and then the places where the min could occur is when } \nabla f = \lambda \nabla g \text{ or } \nabla g = \delta.$

$7. \quad \int_C F \cdot dr = \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = 3 \text{ Area}(\square) \approx 3.$
8. A vector field \(\mathbf{F} \) is shown at right; for scale, here \(\mathbf{F}(0,0) = (0, 0.1) \). Assuming that \(\mathbf{F} \) is conservative, circle the value of \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(C \) is the curve shown from \((0, -1)\) to \((0, 1)\).

\[
\begin{array}{cccccc}
-0.3 & -0.2 & -0.1 & 0 & 0.1 & 0.2 & 0.3
\end{array}
\]

(2 points)

Same as integral along the portion of the y-axis from \((0, -1)\) to \((0, 1)\), which is \((0.1 \times 2) = 0.2\).

9. Consider the transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) given by \(T(u, v) = (2u - v, 2u + v) \). Let \(P \) be the rectangle shown below in the \((x, y)\)-plane, drawn against a unit-square grid. Check the box next to the region \(D \) in the \((u, v)\)-plane below that is mapped to \(P \) by \(T \). (2 points)

- \(D = \{0 \leq u \leq 1 \text{ and } 0 \leq v \leq 1\} \)
- \(D = \{0 \leq u \leq 1 \text{ and } 0 \leq v \leq 4\} \)
- \(D = \{-1 \leq u \leq 0 \text{ and } 0 \leq v \leq 1\} \)
- \(D = \{0 \leq u \leq 2 \text{ and } 0 \leq v \leq 1\} \)
- \(D = \{0 \leq u \leq 4 \text{ and } 0 \leq v \leq 1\} \)
- \(D = \{0 \leq u \leq 1 \text{ and } 0 \leq v \leq 2\} \)

\[
\begin{array}{c}
T(1, 0) = (2, 2) \\
T(0, 1) = (-1, 1)
\end{array}
\]

Scratch Space
10. Consider the curve \(C \) parametrized by \(\mathbf{r}(t) = (\cos t, \sin t, \cos 2t) \), where \(0 \leq t \leq 2\pi \).

(a) Check the box next to the correct sketch of \(C \). \(\textbf{(2 points)} \)

(b) Find the work done if a particle travels along path \(\mathbf{r}(t) \) under the force field given by \(\mathbf{F}(x, y, z) = (-2y, 2x, 0) \). \(\textbf{(4 points)} \)

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \begin{pmatrix} -2\sin t \\ 2\cos t \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -\sin t \\ \cos t \\ -2\sin 2t \end{pmatrix} \, dt
\]

\[
= \int_0^{2\pi} 2(\sin^2 t + \cos^2 t) \, dt
\]

\[
= 4\pi
\]

Total work done = \(4\pi \)

11. Let \(S = \{ u^2 + v^2 + w^2 = 1 \} \) be the unit sphere around the origin, and let \(E = \{ 4x^2 + (y+1)^2 + (z-3)^2 = 1 \} \), which is an ellipsoid with center \((0, 1, 3)\). Find a transformation \(T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) such that \(T(S) = E \). \(\textbf{(3 points)} \)

\[T(u, v, w) = \left(\frac{u}{2}, v + 1, w + 3 \right) \]

Need to scale 1st coor down by \(\frac{1}{2} \), then shift in the other two coor.

12. Find the volume of the solid that lies below the cone \(z = -\sqrt{x^2 + y^2} \) and inside the sphere \(x^2 + y^2 + z^2 = 4 \). (5 points)

\[
\text{Vol}(E) = \int_0^2 \int_0^{\pi / 4} \int_0^{2\pi} \rho^2 \sin \phi \, d\theta \, d\phi \, d\rho
\]

\[
= \int_0^2 \rho^2 \, d\rho \int_0^{2\pi} d\theta \int_0^{\pi / 4} \sin \phi \, d\phi
\]

\[
= \left(\frac{\rho^3}{3} \right) \cdot 2\pi \cdot \left(-\cos \phi \right) \bigg|_0^{\pi / 4}
\]

\[
= \frac{8}{3} \cdot 2\pi \left(1 - \frac{1}{\sqrt{2}} \right)
\]

Write your volume integral here:

\[
\int_0^2 \int_0^{\pi / 4} \int_0^{2\pi} \rho^2 \sin \phi \, d\theta \, d\phi \, d\rho
\]

Your final answer: Volume = \(\frac{16\pi}{3} \left(1 - \frac{1}{\sqrt{2}} \right) \)
13. For each of the integrals: (A) $\int_0^\pi \int_0^1 \int_{1-r^2}^1 f(r, \theta, z) r \, dz \, dr \, d\theta$ and (B) $\int_0^\pi \int_0^1 \int_0^{1-z} f(r, \theta, z) r \, dr \, dz \, d\theta$

label the solid corresponding to the region of integration below. (2 points each)

![Solid Integrals](image)

14. Label the boxes next to the parametrizations that correspond to the following two surfaces: (2 points each)

- **B** $r(u, v) = \left< \frac{\cos u \, \sin v}{1 + u^2}, \frac{\sin u}{1 + u^2}, u \right>$ for $-1 \leq u \leq 1$, $0 \leq v \leq 2\pi$

- **A** $r(u, v) = \left< \cos v, \sin u, v \right>$ for $-1 \leq u \leq 1$, $0 \leq v \leq 2\pi$

- **A** $r(u, v) = \left< \cos v, u \sin v, 1 - u^2 \right>$ for $0 \leq u \leq 1$, $0 \leq v \leq 2\pi$

- $r(u, v) = \left< \sin u \cos v, \sin u \sin v, \cos u \right>$ for $0 \leq u \leq \pi/2$, $0 \leq v \leq 2\pi$
15. Here are plots of five vector fields on the box where \(0 \leq x \leq 1\), \(0 \leq y \leq 1\), and \(0 \leq z \leq 1\). (2 points each)

(a) Circle the name of the vector field that is given by \((-z, 0, 1+x)\): A B C D E

(b) Exactly one of these vector fields has nonzero divergence. Circle it: A B C D E

(c) The vector field C is conservative: true false

(d) Which vector field is the gradient of a function \(f\) whose level sets are shown below? A B C D E
16. Let E be the solid region shown below, where ∂E is decomposed into the four subsurfaces S_i indicated; here the top S_0 is where $z + x^2 = 1$, the front S_1 is in the xz-plane, the back is S_2, and the bottom is S_3.

(a) Use a triple integral to compute the volume of E. \(4 \) points

\[
\int_{-1}^{1} \int_{0}^{1-x^2} \int_{0}^{1} \, dz \, dy \, dx = \int_{-1}^{1} \left(1 - x^2 \right) dx = 2 - 2x^2 \left|_{x=-1}^{1} \right. = \frac{8}{3}
\]

Vol(E) = $\frac{8}{3}$

(b) Give a parameterization of S_0 and use it to directly compute the flux of $\mathbf{F} = \langle 1, 0, z + 2 \rangle$ through S_0 with respect to the upwards normals. \(5 \) points

$\mathbf{r}(u,v) = \langle u, v, 1 - u^2 \rangle$ \(D = \{ -1 \leq u \leq 1 \text{ and } 0 \leq v \leq 2 \} \)

$\mathbf{r}_u \times \mathbf{r}_v = \begin{vmatrix} i & j & k \\ 1 & 0 & -2u \\ 0 & 1 & 0 \end{vmatrix} = \langle 2u, 0, 1 \rangle$

$\mathbf{F}(\mathbf{r}(u,v)) = \langle 1, 0, 3 - u^2 \rangle$

$\mathbf{\text{Flux}} = \int_{0}^{2} \int_{-1}^{1} \mathbf{F}(\mathbf{r}(u,v)) \cdot (2u, 0, 1) \, du \, dv$

$= \int_{0}^{2} \int_{-1}^{1} 2u + 3 - u^2 \, du \, dv$

$= \int_{0}^{2} \left(\frac{u^2}{2} + 3u - \frac{u^3}{3} \right)_{u=-1}^{1} \, dv$

$= \int_{0}^{2} \left(\frac{8}{3} \right) \, dv$

$= \frac{16}{3}$

\[\iint_{S_0} \mathbf{F} \cdot d\mathbf{S} = \frac{32}{3} \]

(c) The flux of \mathbf{F} through exactly two of S_1, S_2, and S_3 is zero. Circle the one where the flux is nonzero. \(1 \) point

\[S_1 \quad S_2 \quad \boxed{S_3} \]
17. Consider the vector field \(\mathbf{F} = (-y, x+z, x^2+z) \) on \(\mathbb{R}^3 \).

(a) Circle the curl of \(\mathbf{F} \): (2 points)

\[
\text{curl} \mathbf{F} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\end{vmatrix}
= \langle -1, -2x, 2 \rangle
\]

(b) Suppose \(C \) is a closed curve in the plane \(P \) given by \(x - z = 1 \). Assuming \(C \) bounds a region \(R \) of area 10 in \(P \), determine the absolute value of \(\int_C \mathbf{F} \cdot d\mathbf{r} \). (4 points)

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (\text{curl} \mathbf{F}) \cdot \hat{n} \, dA = \iint_R \langle -1, -2x, 2 \rangle \cdot \frac{1}{\sqrt{2}} \langle 1, 0, -1 \rangle \, dA
\]

\[
\iint_R \frac{1}{\sqrt{2}} (-1 - 2x) \, dA = \frac{-3}{\sqrt{2}} \frac{\text{Area}(R)}{\sqrt{2}} = \frac{-30}{\sqrt{2}}
\]

Normal to \(R \) comes from eqn for plane: \(x - z = 1 \)

\(\Rightarrow \langle 1, 0, -1 \rangle \) \(\Rightarrow \hat{n} = \frac{1}{\sqrt{2}} \langle 1, 0, -1 \rangle \) make unit

\[
\left| \int_C \mathbf{F} \cdot d\mathbf{r} \right| = \frac{30}{\sqrt{2}}
\]
18. The surface S shown below has boundary the circle of radius 2 in the xz-plane. With respect to the normal vector field indicated, compute the flux of $\mathbf{G} = (0, 3, 0)$ through S. (5 points)

Backup question: If you can’t find the exact answer, determine whether the flux is positive, zero, or negative and write that in the answer box for partial credit.

Let D be the disc of radius 2 in the xz-plane.

Then D and S together bound a solid region E. Then

$$0 = \iiint \operatorname{div} \mathbf{G} = \iint_{\partial E} \mathbf{G} \cdot \mathbf{n} \, dA = \iint_{D} \mathbf{G} \cdot \mathbf{n} \, dA + \iint_{S} \mathbf{G} \cdot \mathbf{n} \, dA.$$

Thus $\iint_{S} \mathbf{G} \cdot \mathbf{n} \, dA = -\iint_{D} \mathbf{G} \cdot \mathbf{n} \, dA$

= $\iint_{D} \mathbf{G} \cdot \mathbf{j} \, dA$

= $\iint_{D} 3 \, dA = 3 \operatorname{Area}(D) = 3 \pi 2^2 = 12 \pi$

Thus $\iint_{S} \mathbf{G} \cdot d\mathbf{s} = 12 \pi$

Scratch Space
19. Suppose \(g(x, y, z) = e^x + y \cos z \) and \(\mathbf{G} = \nabla g = \langle e^x, \cos z, -y \sin z \rangle \) is its gradient vector field. (2 points each)

(a) Let \(\mathbf{C} \) denote the parametric curve \(\mathbf{r}(t) = \langle 2, t, \pi t \rangle \) for \(0 \leq t \leq 1 \). The integral \(\int_C \mathbf{G} \cdot d\mathbf{r} \) is:

\[
\begin{array}{c}
e^2 & \pi & 1 & 0 & e^2 - 1 \\
\end{array}
\]

(b) Let \(\mathbf{S} \) denote the hemisphere defined by \(x^2 + y^2 + z^2 = 1 \) and \(z \geq 0 \); let \(\mathbf{n} \) denote the upward unit normal. The integral \(\iint_S \text{curl} \mathbf{G} \cdot \mathbf{n} \, dA \) is: \(\text{positive} \) \(\text{zero} \) \(\text{negative} \)

(c) Consider the vector field \(\mathbf{F} = \langle -y, x + z, y \rangle \). The vector field \(\mathbf{F} \) is: \(\text{conservative} \) \(\text{not conservative} \)

20. Suppose \(E \) is a solid region in \(\mathbb{R}^3 \) looking like the picture at right.

(a) Suppose \(E \) has volume 10 and is made of material of constant density. Check the box next to the integral that must compute the \(x \)-coordinate of its center of mass. (2 points)

\[
\begin{array}{c}
\square & \frac{1}{30} \iiint_E \mathbf{A} \cdot dS & \text{for } \mathbf{A} = \langle x, y, z \rangle & \square & \iiint_E x \, dV \\
\checkmark & \frac{1}{20} \iiint_E \mathbf{B} \cdot dS & \text{for } \mathbf{B} = \langle z, xy, xz \rangle & \square & \frac{1}{10} \iiint_E y \, dV \\
\square & \text{None of these.} \\
\end{array}
\]

(b) Assuming the origin lies inside of \(E \), determine the flux of \(\mathbf{H} = \frac{-3}{(x^2 + y^2 + z^2)^{3/2}} \langle x, y, z \rangle \) through \(\partial E \).

(2 points)

\[
\text{Use Gauss's Law: } \quad \iiint_{\partial E} \mathbf{H} \cdot d\mathbf{S} = -12 \pi
\]