Lecture 19: Vector fields (16.1 and 16.2)

Last time:
\[C \subset \mathbb{R}^3 \]
\[f: \mathbb{R}^3 \to \mathbb{R} \]
\[\int_C f \, ds = \int_a^b f(\vec{r}(t)) |\vec{r}'(t)| \, dt \]
where \(\vec{r}: [a,b] \to \mathbb{R}^3 \) is a param. of \(C \).

Meanings:
1. Area of \(f \) on \(C \) is \(\frac{1}{\text{len}(C)} \int_C f \, ds \)
2. Total mass = \(\int_C f \, ds \)
3. Area of \(f \) where \(f \) is a density fn

\[\int_C f \, ds \]

Note: \(ds = |\vec{r}'(t)| \, dt \) is called the "arc length" element.

Also \(\int_C 1 \, ds = \text{Length}(C) \).

Vector Fields: (16.1 and 16.2)

For \(\mathbb{R}^2 \), a vector field is a function \(\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2 \)

Ex: \(\vec{F}(x,y) = -y \hat{i} + x \hat{j} \)

Uses:
- Wind speed/direction
- Fluid flow
- Force magnitude/direction
- Electric/magnetic fields
Ex: Gravity:

Large mass \(M \) at \((0,0)\).

Force \(\vec{F} \) on small mass \(m \) depends on position.

\(\vec{F} \) points in direction \(-\hat{r} \)

Newton's Law:

\[
|\vec{F}| = \frac{MmG}{|\vec{r}|^2}
\]

If \(\vec{F} = -c \vec{r} \) then \(|\vec{F}| = c |\vec{r}| \implies c = \frac{MmG}{|\vec{r}|^3} \)

So

\[
\vec{F} = -\frac{MmG}{|\vec{r}|^3} \hat{r}
\]

For several bodies, add vector fields.

\[
\vec{F}(x,y) = \vec{F}_1(x,y) + \vec{F}_2(x,y)
\]
Ex: Electric field. Force on a charge q at (x,y) is

$$\vec{F} = \frac{E(x,y)}{q}$$

Where have we seen vector fields before?

A. The gradient!

$f: \mathbb{R}^2 \rightarrow \mathbb{R}$ then $\nabla f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$

Ex. $f(x,y) = x^2 + y^2$

$\nabla f = (2x, 2y)$

Ex: $f(x,y) = \frac{MmG}{\sqrt{x^2 + y^2}} = \frac{MmG}{1 \cdot r}$

$\nabla f = MmG \left(-\frac{1}{2} (x^2 + y^2)^{-3/2}, 2x \right)$

$= MmG \left(\frac{x}{(x^2 + y^2)^{3/2}}, \frac{y}{(x^2 + y^2)^{3/2}} \right) = \frac{MmG}{1 \cdot r^3} \vec{r} = \vec{F}$

Say that f is a potential function for \vec{F}, and that \vec{F} is a conservative vector field.

Think potential energy.
Q: Is $\vec{F} = y\vec{i} - x\vec{j}$ conservative?

A: No. Suppose $\nabla f = \vec{F}$. Since \vec{F} is tangent to the unit circle, following the circle increases f. But going all the way around, we end up atback at $(1,0)$.

Integrating Vector Fields: (16.2)

Recall: Work done by gravity

$W = \vec{F} \cdot \vec{d}$

[Assumes constant force.]

How much work does gravity do here?

Motion of ship $\vec{F}: \mathbb{R} \to \mathbb{R}^2$.

Force of grav = vector field \vec{F}.

Break into segments

\[\mathbf{F}(\mathbf{r}(t)) \]

\[\mathbf{F}(\mathbf{r}(t_i)) \]

\[\approx \Delta t \mathbf{F}'(t_i) \]

Work done here \(\approx \mathbf{F}(\mathbf{r}(t_i)) \cdot (\mathbf{r}(t_{i+1}) - \mathbf{r}(t_i)) \)

\[\approx (\mathbf{F}(\mathbf{r}(t_i)) \cdot \mathbf{r}'(t_i)) \Delta t \]

Sum up and take \(\Delta t \to 0 \) to get

\[\text{Total Work} = \int_a^b \mathbf{F}(\mathbf{F}(t)) \cdot \mathbf{r}'(t) \, dt \]

General Setup: \(C \) a curve in \(\mathbb{R}^n \)

\(\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n \) a vector field.

\[\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{F}(t)) \cdot \mathbf{r}'(t) \, dt \]

for any param \(\mathbf{r}: [a,b] \to \mathbb{R}^n \).

[Note: Answer only depends on direction of param.]
Ex: \(C = \)\(\text{parabola } y = x^2 \)\(\Rightarrow (1, 1) \) \(\vec{r}(t) = (t, t^2) \) for \(0 \leq t \leq 1 \).
\(\vec{r}'(t) = (1, 2t) \)

\[\int_C \vec{F} \cdot d\vec{r} = \int_0^1 \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt = \int_0^1 (t^2, 1) \cdot (1, 2t) \, dt \]

\[= \int_0^1 t^2 + 2t \, dt = \left[\frac{t^3}{3} + t^2 \right]_0^1 = \frac{4}{3}. \]

Explain why this is consistent with the work integral.