PRINCETON LANDMARKS
IN MATHEMATICS AND PHYSICS

Non-standard Analysis,
by Abraham Robinson

General Theory of Relativity,
by P.A.M. Dirac

Angular Momentum in Quantum Mechanics,
by A. R. Edmonds

Mathematical Foundations of Quantum Mechanics,
by John von Neumann

Introduction to Mathematical Logic,
by Alonzo Church

Convex Analysis,
by R. Tyrrell Rockafellar

Riemannian Geometry,
by Luther Pfahler Eisenhart

The Classical Groups,
by Hermann Weyl

Topology from the Differentiable Viewpoint,
by John Milnor

TOPOLOGY FROM THE
DIFFERENTIABLE
VIEWPOINT

Revised Edition

John W. Milnor

BASED ON NOTES BY DAVID W. WEAVER

PRINCETON UNIVERSITY PRESS
PRINCETON, NEW JERSEY
§1. SMOOTH MANIFOLDS
AND SMOOTH MAPS

First let us explain some of our terms. \(\mathbb{R}^k \) denotes the \(k \)-dimensional euclidean space; thus a point \(x \in \mathbb{R}^k \) is an \(k \)-tuple \(x = (x_1, \ldots, x_k) \) of real numbers.

Let \(U \subset \mathbb{R}^k \) and \(V \subset \mathbb{R}^l \) be open sets. A mapping \(f \) from \(U \) to \(V \) (written \(f : U \to V \)) is called smooth if all of the partial derivatives \(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_k} \) exist and are continuous.

More generally let \(X \subset \mathbb{R}^k \) and \(Y \subset \mathbb{R}^l \) be arbitrary subsets of euclidean spaces. A map \(f : X \to Y \) is called smooth if for each \(x \in X \) there exist an open set \(U \subset \mathbb{R}^k \) containing \(x \) and a smooth mapping \(F : U \to \mathbb{R}^l \) that coincides with \(f \) throughout \(U \cap X \).

If \(f : X \to Y \) and \(g : Y \to Z \) are smooth, note that the composition \(g \circ f : X \to Z \) is also smooth. The identity map of any set \(X \) is automatically smooth.

Definition. A map \(f : X \to Y \) is called a diffeomorphism if \(f \) carries \(X \) homeomorphically onto \(Y \) and if both \(f \) and \(f^{-1} \) are smooth.

We can now indicate roughly what differential topology is about by saying that it studies those properties of a set \(X \subset \mathbb{R}^k \) which are invariant under diffeomorphism.

We do not, however, want to look at completely arbitrary sets \(X \). The following definition singles out a particularly attractive and useful class.

Definition. A subset \(M \subset \mathbb{R}^k \) is called a smooth manifold of dimension \(m \) if each \(x \in M \) has a neighborhood \(W \cap M \) that is diffeomorphic to an open subset \(U \) of the euclidean space \(\mathbb{R}^m \).

Any particular diffeomorphism \(g : U \to W \cap M \) is called a parameterization of the region \(W \cap M \). (The inverse diffeomorphism \(W \cap M \to U \) is called a system of coordinates on \(W \cap M \).)
§1. Smooth manifolds

Figure 1. Parametrization of a region in M

Sometimes we will need to look at manifolds of dimension zero. By definition, M is a manifold of dimension zero if each $x \in M$ has a neighborhood $W \cap M$ consisting of x alone.

Examples. The unit sphere S^2, consisting of all $(x, y, z) \in \mathbb{R}^3$ with $x^2 + y^2 + z^2 = 1$ is a smooth manifold of dimension 2. In fact the diffeomorphism

$$(x, y) \mapsto (x, y, \sqrt{1 - x^2 - y^2}),$$

for $x^2 + y^2 < 1$, parametrizes the region $z > 0$ of S^2. By interchanging the roles of x, y, z, and changing the signs of the variables, we obtain similar parametrizations of the regions $x > 0, y > 0, x < 0, y < 0$, and $z < 0$. Since these cover S^2, it follows that S^2 is a smooth manifold.

More generally the sphere $S^{n-1} \subset \mathbb{R}^n$ consisting of all (x_1, \ldots, x_n) with $\sum x^2 = 1$ is a smooth manifold of dimension $n - 1$. For example $S^0 \subset \mathbb{R}^1$ is a manifold consisting of just two points.

A somewhat wilder example of a smooth manifold is given by the set of all $(x, y) \in \mathbb{R}^2$ with $x \neq 0$ and $y = \sin(1/x)$.

TANGENT SPACES AND DERIVATIVES

To define the notion of derivative df_x for a smooth map $f : M \to N$ of smooth manifolds, we first associate with each $x \in M \subset \mathbb{R}^n$ a linear subspace $TM_x \subset \mathbb{R}^n$ of dimension m called the tangent space of M at x. Then df_x will be a linear mapping from TM_x to TN_y, where $y = f(x)$. Elements of the vector space TM_x are called tangent vectors to M at x.

Intuitively one thinks of the m-dimensional hyperplane in \mathbb{R}^n which best approximates M near x; then TM_x is the hyperplane through the origin that is parallel to this. (Compare Figures 1 and 2.) Similarly one thinks of the nonhomogeneous linear mapping from the tangent hyperplane at x to the tangent hyperplane at y which best approximates f. Translating both hyperplanes to the origin, one obtains df_x.

Before giving the actual definition, we must study the special case of mappings between open sets. For any open set $U \subset \mathbb{R}^n$ the tangent space TU, is defined to be the entire vector space \mathbb{R}^n. For any smooth map $f : U \to V$ the derivative

$$df_x : \mathbb{R}^n \to \mathbb{R}^m$$

is defined by the formula

$$df_x(h) = \lim_{t \to 0} (f(x + th) - f(x))/t$$

for $x \in U$, $h \in \mathbb{R}^n$. Clearly $df_x(h)$ is a linear function of h. (In fact df_x is just that linear mapping which corresponds to the $l \times k$ matrix $(df_x/\partial x_i)_j$ of first partial derivatives, evaluated at x.)

Here are two fundamental properties of the derivative operation:

1. (Chain rule). If $f : U \to V$ and $g : V \to W$ are smooth maps, with $f(x) = y$, then

$$d(g \circ f)_x = dg_y \circ df_x.$$

In other words, to every commutative triangle

$$\begin{array}{ccc}
V & \xrightarrow{g} & W \\
\xrightarrow{f} & & \\
U & \xrightarrow{g \circ f} & W
\end{array}$$

of smooth maps between open subsets of $\mathbb{R}^n, \mathbb{R}^m, \mathbb{R}^n$, there corresponds a commutative triangle of linear maps

$$\begin{array}{ccc}
\mathbb{R}^m & \xrightarrow{d(g \circ f)_x} & \mathbb{R}^n \\
\xrightarrow{d(g)_y} & & \\
\mathbb{R}^n & \xrightarrow{df_x} & \mathbb{R}^m
\end{array}$$

2. If I is the identity map of U, then dI_x is the identity map of \mathbb{R}^n. More generally, if $U \subset U'$ are open sets and

$$i : U \to U'$$

is the inclusion, then di_x is the identity map of \mathbb{R}^n.
§1. Smooth manifolds

is the inclusion map, then again d_i is the identity map of R^i.

Note also:

3. If $L : R^n \to R^i$ is a linear mapping, then $dL = L$.

As a simple application of the two properties one has the following:

Assertion. If f is a diffeomorphism between open sets $U \subset R^n$ and $V \subset R^i$, then k must equal l, and the linear mapping

$$df : R^n \to R^i$$

must be nonsingular.

Proof. The composition $f^{-1} \circ f$ is the identity map of U; hence $d(f^{-1} \circ df)$ is the identity map of R^n. Similarly $df \circ d(f^{-1})$ is the identity map of R^i. Thus df has a two-sided inverse, and it follows that $k = l$.

A partial converse to this assertion is valid. Let $f : U \to R^n$ be a smooth map, with U open in R^n.

Inverse Function Theorem. If the derivative $df : R^n \to R^i$ is nonsingular, then f maps any sufficiently small open set U' about x diffeomorphically onto an open set $f(U')$.

(See Apostol [2, p. 144] or Dieudonné [7, p. 268].)

Note that f may not be one-one in the large, even if every df, is nonsingular. (An instructive example is provided by the exponential mapping of the complex plane into itself.)

Now let us define the tangent space TM_x for an arbitrary smooth manifold $M \subset R^n$. Choose a parametrization

$$g : U \to M \subset R^n$$

of a neighborhood $g(U)$ of x in M, with $g(u) = x$. Here U is an open subset of R^n. Think of g as a mapping from U to R^n, so that the derivative

$$dg : R^n \to R^n$$

is defined. Set TM_x equal to the image $dg(R^n)$ of dg. (Compare Figure 1.)

We must prove that this construction does not depend on the particular choice of parametrization g. Let $h : V \to M \subset R^n$ be another parametrization of a neighborhood $h(V)$ of x in M, and let $v = h^{-1}(x)$. Then $h^{-1} \circ g$ maps some neighborhood U_i of u diffeomorphically onto a neighborhood V_i of v. The commutative diagram of smooth maps

![Tangent spaces](image)

gives rise to a commutative diagram of linear maps

$$dg \circ R^n \cong dh \circ R^n$$

and it follows immediately that

$$\text{Image}(dg) = \text{Image}(dh).$$

Thus TM_x is well defined.

Proof that TM_x is an m-dimensional vector space. Since

$$g^{-1} : g(U) \to U$$

is a smooth mapping, we can choose an open set W containing x and a smooth map $F : W \to R^n$ that coincides with g^{-1} on $W \cap g(U)$. Setting $U_0 = g^{-1}(W \cap g(U))$, we have the commutative diagram

![Diagram](image)

and therefore

$$dg : R^n \to R^n$$

This diagram clearly implies that dg has rank m, and hence that its image TM_x has dimension m.

Now consider two smooth manifolds, $M \subset R^n$ and $N \subset R^l$, and a
§1. Smooth manifolds

smooth map

\[f : M \rightarrow N \]

with \(f(x) = y \). The derivative

\[df_x : TM_x \rightarrow TN_y \]

is defined as follows. Since \(f \) is smooth there exist an open set \(W \) containing \(x \) and a smooth map

\[F : W \rightarrow \mathbb{R}^i \]

that coincides with \(f \) on \(W \cap M \). Define \(df_x(v) \) to be equal to \(dF_x(v) \) for all \(v \in TM_x \).

To justify this definition we must prove that \(dF_x(v) \) belongs to \(TN_y \) and that it does not depend on the particular choice of \(F \).

Choose parametrizations

\[g : U \rightarrow M \subset \mathbb{R}^k \text{ and } h : V \rightarrow N \subset \mathbb{R}^i \]

for neighborhoods \(g(U) \) of \(x \) and \(h(V) \) of \(y \). Replacing \(U \) by a smaller set if necessary, we may assume that \(g(U) \subset W \) and that \(f \) maps \(g(U) \) into \(h(V) \). It follows that

\[h^{-1} \circ f \circ g : U \rightarrow V \]

is a well-defined smooth mapping.

Consider the commutative diagram

\[\begin{array}{ccc}
W & \xrightarrow{F} & \mathbb{R}^i \\
\uparrow & & \uparrow \\
U & \xrightarrow{g} & \mathbb{R}^k \\
\downarrow h^{-1} \circ f \circ g & & \\
V & \xrightarrow{h} & \mathbb{R}^i
\end{array} \]

of smooth mappings between open sets. Taking derivatives, we obtain a commutative diagram of linear mappings

\[\begin{array}{ccc}
\mathbb{R}^k & \xrightarrow{dF_x} & \mathbb{R}^i \\
\uparrow dg_x & & \uparrow dh_x \\
\mathbb{R}^k & \xrightarrow{d(h^{-1} \circ f \circ g)_x} & \mathbb{R}^i
\end{array} \]

where \(u = g^{-1}(x), v = h^{-1}(y) \).

It follows immediately that \(dF_x \) carries \(TM_x = \text{Image} \ (dg_x) \) into \(TN_y = \text{Image} \ (dh_x) \). Furthermore the resulting map \(df_x \) does not depend on the particular choice of \(F \), for we can obtain the same linear transformation by going around the bottom of the diagram. That is:

\[df_x = dh_x \circ d(h^{-1} \circ f \circ g)_x \circ (dg_x)^{-1}. \]

This completes the proof that

\[df_x : TM_x \rightarrow TN_y \]

is a well-defined linear mapping.

As before, the derivative operation has two fundamental properties:

1. (Chain rule). If \(f : M \rightarrow N \) and \(g : N \rightarrow P \) are smooth, with \(f(x) = y \), then

\[d(g \circ f)_x = dg_y \circ df_x. \]

2. If \(I \) is the identity map of \(M \), then \(di_x \) is the identity map of \(TM_x \).

More generally, if \(M \subset N \) with inclusion map \(i \), then \(TM_x \subset TN_x \) with inclusion map \(di_x \). (Compare Figure 2.)

![Figure 2. The tangent space of a submanifold](image)

The proofs are straightforward.

As before, these two properties lead to the following:

Assertion. If \(f : M \rightarrow N \) is a diffeomorphism, then \(df_x : TM_x \rightarrow TN_y \) is an isomorphism of vector spaces. In particular the dimension of \(M \) must be equal to the dimension of \(N \).

REGULAR VALUES

Let \(f : M \rightarrow N \) be a smooth map between manifolds of the same dimension. We say that \(x \in M \) is a regular point of \(f \) if the derivative

* This restriction will be removed in §2.
§1. Smooth manifolds

df_x is nonsingular. In this case it follows from the inverse function theorem that f maps a neighborhood of x in M diffeomorphically onto an open set in N. The point $y \in N$ is called a regular value if $f^{-1}(y)$ contains only regular points.

If df_x is singular, then x is called a critical point of f, and the image $f(x)$ is called a critical value. Thus each $y \in N$ is either a critical value or a regular value according as $f^{-1}(y)$ does or does not contain a critical point.

Observe that if M is compact and $y \in N$ is a regular value, then $f^{-1}(y)$ is a finite set (possibly empty). For $f^{-1}(y)$ is in any case compact, being a closed subset of the compact space M; and $f^{-1}(y)$ is discrete, since f is one-one in a neighborhood of each $x \in f^{-1}(y)$.

For a smooth $f : M \to N$, with M compact, and a regular value $y \in N$, we define $\#f^{-1}(y)$ to be the number of points in $f^{-1}(y)$. The first observation to be made about $\#f^{-1}(y)$ is that it is locally constant as a function of y (where y ranges only through regular values!). I.e., there is a neighborhood $V \subset N$ of y such that $\#f^{-1}(y') = \#f^{-1}(y)$ for any $y' \in V$. [Let x_1, \ldots, x_s be the points of $f^{-1}(y)$, and choose pairwise disjoint neighborhoods U_1, \ldots, U_s of these which are mapped diffeomorphically onto neighborhoods V_1, \ldots, V_s in N. We may then take

$$V = V_1 \cap V_2 \cap \cdots \cap V_s - f(M - U_1 - \cdots - U_s).$$]

THE FUNDAMENTAL THEOREM OF ALGEBRA

As an application of these notions, we prove the fundamental theorem of algebra: every nonconstant complex polynomial $P(z)$ must have a zero.

For the proof it is first necessary to pass from the plane of complex numbers to a compact manifold. Consider the unit sphere $S^2 \subset \mathbb{R}^3$ and the stereographic projection

$$h_+: S^2 - \{(0, 0, 1)\} \to \mathbb{R}^2 \times 0 \subset \mathbb{R}^3$$

from the "north pole" $(0, 0, 1)$ of S^2. (See Figure 3.) We will identify $\mathbb{R}^2 \times 0$ with the plane of complex numbers. The polynomial map P from $\mathbb{R}^2 \times 0$ to itself corresponds to a map f from S^2 to itself; where

$$f(x) = h_+^{-1}Ph_+(x) \quad \text{for} \quad x \neq (0, 0, 1)$$

$$f(0, 0, 1) = (0, 0, 1).$$

It is well known that this resulting map f is smooth, even in a neighbor-

![Figure 3. Stereographic projection](image-url)