Thm: G a finite group. Then \exists a Galois extension K of $\mathbb{C}(t)$ with $\text{Gal}(K/\mathbb{C}(t))$.

Last time: Given an irreducible curve $V \subseteq \mathbb{C}^2$, a poly fn $h \in \mathbb{C}[V]$ (e.g. proj to the x-axis) get that $K = \mathbb{C}(V)$ is a finite extension of $\mathbb{C}(t)$.

Plan: 1) Given G find a curve V in \mathbb{P}_C^2 on which G acts via symmetries, so that $V/G = \mathbb{P}_C^1 = \mathbb{O}$

2) Each $\sigma \in G$, thought of a sym of V, gives an auto of $K = \mathbb{C}(V)$, via

\[\sigma^*(f) = f \circ \sigma^{-1} \text{ where } f: V \rightarrow \mathbb{P}_C^1. \]

[Aside: Check about group actions]
3. \(K_G = \mathcal{C}(V)_G = \mathcal{C}(V/G) = \mathcal{C}(P^r_2) = \mathcal{C}(t) \).

Toy ex:
\[V = \begin{array}{ccc} 2 & 1 \\ \downarrow & & \downarrow \\ 1 & 2 & 1 \\ \downarrow & & \downarrow \\ 2 & 1 \end{array} \]

\[V/G = \{ \text{half of one side} \} \]

\(G = D_4 \)

Sadly, don't time to prove the whole thing as need a third perspective.

\[\{ \text{Alg. curves over } \mathbb{C} \} \leftrightarrow \{ \text{finite extensions of } \mathbb{C}(t) \} \]

Complex analysis = \{ Riemann surfaces \}

Also need some topology of covering spaces.

Instead, I'll do an example with \(G = S_3 \).
Given a finite group G, let's make it act on some geometric object.

Def: Let S be a generating set for G.

The Cayley Graph $\Gamma(G, S)$ has:

1. a vertex V_g for each $g \in G$.
2. an edge labeled s from V_g to V_{gs} for each $g \in G$ and $s \in S$.

Ex: $S_3 = \{1, (12), (13), (23), (123), (132)\}$

$S = \{a = (12), b = (123)\}$
Q: Is $abab^{-1}ab$?

\[A, (12) = a. \]

For any (G, S), the Cayley graph is very symmetric. In particular, G acts on Γ via:

\[g \cdot V_h = V_{gh} \quad \text{(which doesn't break)} \]

In our example:

We have:

- a rotates by π.
- b rotates by $2\pi/3$.

Comment on Expanders/Geometric Group Theory!
What is Γ/Γ_0?

Now we want Γ to act on a surface, so "thicken" Γ/Γ_0 to

and corresponding Γ to

Now for each circle boundary component, add a disc.
So \(\Gamma/\mathbb{G} \) becomes

\[
X = \begin{array}{c}
\infty
\end{array}
= \mathbb{P}^1
\]

And \(\mathbb{G} \) becomes

\[
Y = \begin{array}{c}
\text{as well.}
\end{array}
\]

The action of \(\mathbb{G} \) on \(\Gamma \) gives an action of \(\mathbb{G} \) on \(Y \).

- \((13) \) rotates by \(\pi \)
- \((23) \) rotates by \(\pi \)
- \(a \) rotates by \(\pi \)
- \(b \) rotates by \(2\pi/3 \)

\[
[S_3 = \text{orientable isom of the bipyramid}]
\]
What is $p : Y \rightarrow X$ like?

First, notice $\pi : \Gamma \rightarrow \Gamma / G$ is locally 1-1 (a homeomorphism). The same is true for $p : Y \rightarrow X$, except at the 8 points the are fixed by some elt of G (these are the centers of the added discs).

At these pts looks like

\[\begin{array}{c}
\pi \\
\downarrow \\
\mathbb{Z}^2 \\
\end{array} \quad \text{or} \quad \begin{array}{c}
2\pi/3 \\
\downarrow \\
\mathbb{Z}^3 \\
\end{array} \]
So, locally, \(p \) looks like a polynomial.

Now, we invoke the Riemann existence theorem to turn this into a honest rational map \(P^1 \to P^1 \). This will give an extension \(K/C(t) \) with Galois group \(S_3 \).

Note: The construction of \(p: Y \to X \) from \(T(G, S) \) is general. Let's the R. E. T. that is hard...