Lecture 5: Which Polynomial Rings are U.F.D.s?

The story so far: Euclidean \Rightarrow PID \Rightarrow U.F.D.

For a field F, the ring $F[x]$ is Euclidean with

\[N(p(x)) = \text{deg } p. \]

For a non-field R, the ring $R[x]$ is not a P.I.D.,
since (x) is a prime ideal which isn't maximal

\[(R[x]/(x) \cong R). \]

E.g., \(R = \mathbb{Z}, \mathbb{Z}[i], \mathbb{Z}[\sqrt{-5}], \ldots \)

Q: When is $R[x]$ a UFD?

Since only const polys can mult to give a const
poly, R must be a UFD if $R[x]$ is. [In fact,
the converse is also true!]

Consider $p \in \mathbb{Z}[x]$. In $\mathbb{Q}[x]$, know that p
is a prod of irreducible $q_1 \cdots q_n$. If $q_i \in \mathbb{Z}[x]$ this
would give the needed factorization. Example:

\[x^2 + 5x + 6 = (\frac{1}{2}x+1)(2x+6) = (x+2)(x+3) \]

Can we always do this step??
Let \(R \) be an integral domain. Recall that its field of fractions is
\[
F = \left\{ \frac{a}{b} \mid a, b \in R, b \neq 0 \right\} / \frac{a}{b} \sim \frac{c}{d} \text{ iff } ad = bc.
\]

[For any UFD \(R \) could try to use fact. in \(F[x] \).]

Gauss' Lemma: \(R \) a UFD w/ field of frac. \(F \).

\(\text{If } p \in R[x] \text{ is reducible in } F[x] \text{ it is red. in } R[x] \).

Specifically if \(p = A \cdot B \text{ in } F[x] \text{ with } A, B \text{ non-const.} \)

then \(\exists r, s \in R \text{ with } a = rA, b = rB \text{ in } R[x] \text{ and } p = ab. \)

\(\text{ i.e.: Factorization in } \mathbb{Z}[x] \text{ is nearly the same as in } \mathbb{Q}[x]. \)

Note: \(2x \text{ factors in } \mathbb{Z}[x] \text{ into } 2, x \text{ but is irreducible in } \mathbb{Q}[x]. \)

Idea Behind Gauss:

\[
p(x) = x^2 + 5x + 6 = \left(\frac{1}{2}x + 1 \right) \left(2x + 6 \right) = A(x) \cdot B(x).
\]

(*) \(2p(x) = (x + 2)(2x + 6) \text{ in } \mathbb{Z}[x] \)

Reduce mod \(I = (2) \), i.e. look at \(\mathbb{Z}[x]/(2) = (\mathbb{Z}/2\mathbb{Z})[x] = \mathbb{F}_2[x]. \)
and get so one of the right-hand factors must be 0, i.e., every coefficient is divisible by 2.

So \(p(x) = (x+2)(x+3) \)

Proof: Pick \(r, s \in \mathbb{R} \) so that \(a'(x) = r a(x) \) and \(b'(x) = s b(x) \) are in \(R[x] \). Set \(d = rs \). So that \(d p(x) = a'(x) b'(x) \). If \(d \) is a unit, take \(a(x) = d^{-1} a'(x) \) and \(b(x) = b'(x) \). Otherwise consider a factorization \(d = q_1 \cdots q_n \) into irreducibles.

Consider \(R[x]/(q_i) = \overline{R}[x] \) where \(\overline{R} = R/(q_i) \) is an unit domain (reason: in a UFD, irrebs are prime). In \(\overline{R}[x] \) we have

\[
0 = \overline{d} \overline{p}(x) = \overline{a'(x)} \overline{b'(x)} \quad \Rightarrow \quad \overline{a'}(x) = 0 \text{ or } \overline{b'}(x) = 0
\]

Say \(\overline{a'}(x) = 0 \). Then \(a'(x) = q, a''(x) = b(x) \) and

\[
(q \cdot q_3 \cdots q_n) p(x) = a''(x) \cdot b'(x)
\]

Repeating reduces the number of factors of \(d \) until we're done.
Next time: \(R[x] \) is a U.F.D. if \(R \) is.

Cor: \(R \) a UFD. Then \(R[x_1, x_2, \ldots, x_n] \) is a UFD.

This is interesting even when \(R = \) field as \(\mathbb{Q}[x, y] \) is not a PID.

Irreducibility Criteria:

\[p(x) \text{ - monic poly in } R[x], \text{ monic constant.} \]
\[\implies p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \]

If \(p(x) \) factors, then it does so into monic factors

\[p(x) = (a_1 x^k + \ldots) (b_2 x^l + \ldots) \quad a_k b_2 = 1 \]

So divide by \(a_k \) and \(b_2 \).

\(I \neq R \) an ideal.

Test: \(c \bar{I} | p(x) \) is irreducible in \((R/I)[x] \) then \(p(x) \) is irreducible in \(R[x] \). \([Pf \text{ is clear}] \)

Why useful? \((R/I)[x] \) is "smaller" and it can be easier to decide irreducible there. \(\text{Ex: } x^2 + x + 1 \in \mathbb{Z}[x] \)

\[I = 2\mathbb{Z}. \]