Last time: \(p(x) = x^4 - 72x^2 + 4 \) is irreducible in \(\mathbb{Z}[x]/\mathbb{Q}[x] \) but reducible in \(\mathbb{Z}_{112}[x] \) for each.

Ex: mod 3, have \(x^4 + 1 = (x^2 + x + 2)(x^2 + 2x + 2) \)

mod 5, have \(x^4 + 3x^2 + 4 = (x^2 + x + 2)(x^2 + 4x + 2) \)

mod 7, have \(x^4 + 5x^2 + 4 = (x^2 + 1)(x^2 + 4) \)

mod 31911, \(= (x^2 + 1549x + 2)(x^2 + 30442x + 2) \)

So if \(p \) factors over \(\mathbb{Z}[x] \) must be \(= (x^2 + ax + b)(x^2 + cx + d) \)

With \(b, d = 4 \Rightarrow b, d = \pm 1, \pm 4 \) or \(\pm 2, \pm 2 \).

The mod 3 + 5 info gives contradictory things, so \(p \) is irreducible.

That \(p \) always factors mod \(n \) comes from quadratic reciprocity about when \(n \) is a square mod \(n \).

(e.g. if \(76 = a^2 \), then \(p(x) = (x^2 + ax + 2)(x^2 - ax + 2) \))

This in turn comes from understanding factorization in \(\mathbb{Z}[S_n = e^{2\pi i/n}] \subseteq \mathbb{Q}(S_n) \) via Galois theory.

So on to chapter 13!

(Martin review of chap. 11.)
Field: A comm. ring w/ one where every nonzero elt is a unit.

Ex: \(\mathbb{Q}, \mathbb{Q}(\sqrt{p}), \mathbb{R}, \mathbb{C}, \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \),

\(\mathbb{C}(x) = \text{ rational functions } \frac{P(x)}{Q(x)} = \text{ field of fractions } \mathbb{C}[x] \)

\(\mathbb{F}_p((t)) = \text{ formal power series } a_n t^n + a_{n+1} t^{n+1} + a_{n+2} t^{n+2} + \ldots \)

\(\mathbb{Q}_p - \text{ p-adic field } \), \(n \) may be negative.

Characteristic: Smallest \(n \) such that

\(n \cdot 1 = 1 + 1 + \ldots + 1 = 0 \) in \(F \), or 0 if no such \(n \) exists.

Ex: \(\text{ch}(\mathbb{Q}) = 0 \), \(\text{ch}(\mathbb{F}_p) = p \), \(\text{ch}(\mathbb{F}_p((t))) = p \).

Prop: If \(\text{ch}(F) \neq 0 \), then it is a prime.

Pf: Suppose \(\text{ch}(F) = a \cdot b \). Then

\((a \cdot 1) \cdot (b \cdot 1) = (ab) \cdot 1 = 0 \)

but neither term on the LHS is 0, contradicting that \(F \) is an int. domain.
Prime subfield: Subfield generated by \(1 \).

\(\mathbb{Q} \) if char = 0 or \(\mathbb{F}_p \) if char = \(p \).

\[\sqrt{\text{[Key!]} } \]

Field Extension: If \(K \) is a subfield of \(F \), then \(F \) is an extension of \(K \) and write \(F/K \) or \(F \)

\[\downarrow \text{rational func} \]

\[\text{Ex: } \mathbb{C}/\mathbb{R}, \mathbb{R}/\mathbb{Q}, \mathbb{Q}(i)/\mathbb{Q}, \mathbb{F}_p(t)/\mathbb{F}_p. \]

[Any field is an extension of its prime subfield]

Consider \(F/K \). Then \(F \) is a \(K \)-vector space,
since given \(k \in K \) and \(f \in F \) have \(k \cdot f \in F \) sat.

\[
\begin{align*}
 k \cdot (f_1 + f_2) &= k \cdot f_1 + k \cdot f_2 \\
 k_1 \cdot (k_2 \cdot f_2) &= (k_1 k_2) \cdot f \\
 (k_1 + k_2) \cdot f &= k_1 \cdot f + k_2 \cdot f \\
 1_k \cdot f &= f.
\end{align*}
\]

Axioms for a \(K \)-vector space all follow from props of fields.
Ex: \mathbb{C}/\mathbb{R}

What is a basis for \mathbb{C} as an \mathbb{R} vector space?

A. $\{1, i\}$ since $\mathbb{C} = \{a+bi \mid a, b \in \mathbb{R}\}$

Subfield of \mathbb{R}

$\mathbb{Q}(\sqrt{2}) = \{a+b\sqrt{2} \mid a, b \in \mathbb{Q}\}$

is a basis for $\mathbb{Q}(\sqrt{2})$ as a \mathbb{Q} vector space: $\{|1, \sqrt{2}|\}$

\mathbb{R}/\mathbb{Q}

A basis has to be infinite, in fact uncountable since \mathbb{R} is uncountable but \mathbb{Q} is countable.

Degree: $[F: K] = \text{size of a } K\text{-basis of } F.$

Ex: $[\mathbb{C}: \mathbb{R}] = [\mathbb{Q}(\sqrt{2}): \mathbb{Q}] = 2,$ $[\mathbb{R}: \mathbb{Q}] = \infty.$

Building fields by adding roots.

K-field $p(x)$-lined nonconstant poly in $K[x]$

$F = K[x]/(p(x))$ is a field since $K[x]$ is a PID $\Rightarrow p$ is prime

$\Rightarrow (p)$ is a prime ideal

$\Rightarrow (p)$ is maximal.
An elt of F has the form $f(x) + I$ where
$I = (p(x))$. Can assume $\deg f < \deg p$ since
if $f = a_nx^n + \cdots + a_0$ and $p = b_mx^m + \cdots + b_0$ with
$n \geq m$ then $f(x) + I = f(x) - \frac{a_n}{b_m}p(x) + I$
\[= \frac{a_n}{b_m}x^{n-1} + \cdots + I\]
if $\deg f, \deg f' < \deg p$, then $f + I = f' + I$
iff $f = f'$ in $K[x]$, since $f - f' \in I$
and the only elt of $(p(x))$ of $\deg < \deg p$ is 0.

Do $F \leftrightarrow \{\text{poly of } K[x] \text{ of } \}
\{\text{degree } < \text{deg p}\}$

Ex: $K = \mathbb{R}$, $p = x^2 + 1$ which is irreducible since it has
no roots.

$F = \mathbb{R}[x]/(x^2 + 1) = \{ax + b + I \mid a, b \in \mathbb{R}\}$

Q: What is an \mathbb{R} basis for F? $\{1, x\}$
In general \[F = K[x]/(p(x)) : K \] = \text{deg } p(x)

Since 1, x, \ldots, x^{\text{deg } p-1} is a K-basis for F.

Now \[F = \mathbb{R}[x]/(x^2+1) \] is isom to \(\mathbb{C} \) via

\[
\begin{array}{ccc}
1 & \longleftrightarrow & 1 \\
X & \longleftrightarrow & i
\end{array}
\]

or

\[
\begin{array}{ccc}
1 & \longleftrightarrow & 1 \\
X & \longleftrightarrow & -i
\end{array}
\]

Further examples, e.g. \(\mathbb{Q}(\sqrt{2}) \) as time allows. On \(\mathbb{Q}(S_3 = e^{2\pi i/3}) \), so \(S_3^3 = 1 \), though \[[\mathbb{Q}(S_3) : \mathbb{Q}] = 2 \].