Lecture 14: Splitting Fields II.

K/F is a splitting field for $f(x) \in F[x]$ if

(a) f splits completely in $K[x]$.
(b) f does not split completely in L with $F \subseteq L \subseteq K$.

Ex: $Q(3\sqrt{2}, \rho = -\frac{1}{2} + \frac{\sqrt{3}}{2} i)$ is the splitting field of $x^3 - 2$.

Thm: Let $f(x) \in F[x]$. Then \exists an extension K/F

which is a splitting field of $f(x)$.

Proof: Induction on $\deg f$. Let f_1 be an irreducible factor of $f(x)$ in $F[x]$. Let $L = F[x]/(f_1(x)) = F(\theta)$. Then $f(\theta) = 0$, so $f(x) = (x - \theta)f_2(x)$ in $L[x]$.

By induction, $\exists K/L$ in which f splits completely as $(x - \theta_1) \cdots (x - \theta_n)$. Then $F(\theta_1, \ldots, \theta_n)$ is the splitting field for f.

(Can't be any smaller since $K[x]$ is a U.F.D.)
Cor: If \(K \) is a splitting field for \(f(x) \in F[x] \), then \([K:F] = (\text{deg} f) \).

For a random polynomial in \(\mathbb{Z}[x] \), \([K:\mathbb{Q}] = n! \) with prob \(\to 1 \).

Ex: \(x^n - 1 \) in \(\mathbb{Q}[x] \) has splitting field \(\mathbb{Q}(S_n) \subset \mathbb{C} \) where \(S_n = e^{2\pi i/n} \)

\(1, S_n, S_n^2, \ldots, S_n^{n-1} \)

are distinct roots of \(x^n - 1 \), hence

\[x^n - 1 = (x - 1)(x - S_n)(x - S_n^2) \cdots (x - S_n^{n-1}) \]

So \(\mathbb{Q}(S_n) \) is the splitting field of \(x^n - 1 \). An cyclotomic field.

Central example: In 19th century, F.L.T. was "proved" using the false fact that \(\mathbb{Z}[S_n] \) is a U.F.D. (Which fails for \(\mathbb{Z}[S_{23}] \))

Lead to introduction of ideals.
\(R = \mathbb{Z}[-5] \) \(\setminus \) all ineducibles

\[6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \]

Goal: Enlarge \(R \) to \(S \) where UFD returns

\((\text{Compare } \mathbb{Z}[-3] \leq \mathbb{Z}[\sqrt[3]{3} = p]) \)

not a UFD \(\xrightarrow{\text{as a UFD}} \)

Q: \(s \in S \), consider all mult. of 5 which are in \(R \)

(i.e. \((5) \cap R \))

Closed under +, mult of elt to
by anything in \(R \), i.e. an ideal.

\[6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \]

\[(p_1 p_2)(p_3 p_4) \quad (p_1 p_3)(p_2 p_4) \]

Then \((p_1) \cap R \equiv (2, 1 + \sqrt{-5}) \), so take

\[p_1 = (2, 1 + \sqrt{-5}) \quad p_2 = (2, 1 - \sqrt{-5}) \]

\[p_3 = (3, 1 + \sqrt{-5}) \quad p_4 = (3, 1 - \sqrt{-5}) \]

\(\{ \text{all prime ideals} \} \)

\((6) = p_1 p_2 p_3 p_4 \) as ideals, and this factorization is unique.

Same true for e.g. ideals in \(\mathbb{Z}[\sqrt[3]{5}] \).
Back to fields: What is $[Q(\mathbb{S}_n) : Q] =$?

Case $n = p$ a prime. Then

$$x^{p-1} = (x-1)(x^{p-1} + x^{p-2} + \cdots + x + 1)$$

$\Phi(x)$ cyclotomic polynomial

Φ is irreducible, by the following trick:

$$\overline{\Phi(x+1)} = \frac{(x+1)^{p-1} - 1}{x} = x^{p-1} + px^{p-2} + \cdots + \frac{p(p-1)x}{2} + p$$

irred. by Eisenstein.

Thm: Suppose K, K' are splitting fields for

$f(x) \in F(x)$. Then \exists a isom $\psi: K \rightarrow K'$

with $\psi|_F = id|_F$.

Pf: See text, think $K(x) \cong F[x]/m_{F, \alpha(x)}$.

Next, alg. closed fields
Problem 5 from the MT:

\[K/F \text{ ext. of fields, } \alpha \in K. \{e_1, \ldots, e_n\} \text{ a } F\text{-basis of } K. \]

\[T_\alpha : K \rightarrow K \text{ an } F\text{-linear trans.} \]

\[\beta \rightarrow \alpha \cdot \beta \]

\[A_\alpha \in M_n(F) \text{ matrix of } T_\alpha \text{ in } \{e_1, \ldots, e_n\}. \]

\[\Phi : K \rightarrow M_n(F) \text{ a homomorphism of rings.} \]

\[\alpha \mapsto A_\alpha \]

Note: If \(f \in F \) then \(\Phi(f) = (f f.0) \). As \(K \) is a field, this means \(\Phi \) is 1-1.

But note: If \(\alpha \in K \setminus F \) then \(\Phi(\alpha) \neq (\alpha \ 0 \ 0) \).

Let \(p(x) = \det(xI - A) \) be the char poly of \(A \).

By Cayley-Hamilton, \(p(A) = 0 \). Now

\[\Phi(p(\alpha)) = \Phi(\alpha^n + a_{n-1} \alpha^{n-1} + \cdots + a_1 \alpha + a_0) \]

\[= \Phi(\alpha)^n + \Phi(a_{n-1}) \Phi(\alpha)^{n-1} + \cdots + \Phi(a_1) \Phi(\alpha) + \Phi(a_0) \]

\[\in \text{im } F \]

\[= A^n + a_{n-1} A^{n-1} + \cdots + a_0 I = p(A) = 0 \]

As \(\Phi \) is 1-1, must have \(p(\alpha) = 0 \).