Discussion — Thursday, October 7th

Subject: Curves and integration.

1. (a) Sketch the first-octant portion of the sphere \(x^2 + y^2 + z^2 = 16 \). Check that \(P = (2, 2, 2\sqrt{2}) \) is on this sphere and add this point to your picture.

(b) Find a function \(f(x, y) \) whose graph is the top-half of the sphere.

(c) Imagine an ant walking along the surface of the sphere. It walks down the sphere along the path \(C \) that passes through the point \(P \) in the direction parallel to the \(yz \)-plane. Draw this path in your picture.

(d) Use the function from (b) to find a parameterization \(r \) of the ant's path along the portion of the sphere shown in your picture. Specify the domain for \(r \), i.e. the initial time when the ant is at \(P \) and the final time when it hits the \(xy \)-plane.

(e) Adjust your parameterization so that the ant is at \(P \) at time 0 and hits the \(xy \)-plane at time 1. Hint: See 2(b) below. Check your answer with the instructor.

2. Consider the curve \(C \) in \(\mathbb{R}^3 \) given by
 \[
 \mathbf{r}(t) = (e^t \cos t) \mathbf{i} + 2\mathbf{j} + (e^t \sin t) \mathbf{k}
 \]

(a) Calculate the length of the segment of \(C \) between \(\mathbf{r}(0) \) and \(\mathbf{r}(t_0) \). Check your answer with the instructor.

(b) Suppose \(h: \mathbb{R} \to \mathbb{R} \) is a function. We can get another parameterization of \(C \) by considering the composition
 \[
 f(s) = r(h(s))
 \]
 This is called a reparameterization. Find a choice of \(h \) so that
 i. \(f(0) = \mathbf{r}(0) \)
 ii. The length of the segment of \(C \) between \(f(0) \) and \(f(s) \) is \(s \). (This is called parameterizing by arc length.)

 Check your answer with the instructor.

(c) Without calculating anything, what is \(|f'(s)| \)?

(d) Draw a sketch of \(C \).

3. Consider the curve \(C \) given by the parameterization \(\mathbf{r}: \mathbb{R} \to \mathbb{R}^3 \) where \(\mathbf{r}(t) = (\sin t, \cos t, \sin^2 t) \).

(a) Show that \(C \) is in the intersection of the surfaces \(z = x^2 \) and \(x^2 + y^2 = 1 \).

(b) Use (a) to help you sketch the curve \(C \).

4. As in 2(b), consider a reparameterization
 \[
 f(s) = r(h(s))
 \]
 of an arbitrary vector-valued function \(\mathbf{r}: \mathbb{R} \to \mathbb{R}^3 \). Use the chain rule to calculate \(|f'(s)| \) in terms of \(\mathbf{r}' \) and \(h' \).