L/K normal, β a prime of O_K.
$\text{Gal}(L/K)$ acts on \{primes of O_L\} $= \mathbb{Q}$ e.g.
have a hom. $\text{Gal}(L/K) \to \text{Sym}(\mathbb{Q})$

Last time: Action is transitive.

Will use this action to L/K up into simpler pieces
from β's point of view: $\mathfrak{p}_L = \mathfrak{p}_E^e \cdot \mathfrak{p}_D^f$ \Rightarrow ram index inital degree

\[
\begin{array}{cccc}
\vdots & \mathfrak{p}_L & \mathfrak{p}_E & \mathfrak{p}_D \\
\text{intrinsic field} & L & E & D \\
\text{decomposition field} & \vdots & \mathfrak{p}_E & \mathfrak{p}_D \\
K & \beta & \vdots & \vdots \\
\end{array}
\]

Here $\mathfrak{p}_E = \mathfrak{p}_E \cap \mathfrak{O}_E$ and $\mathfrak{p}_D = \mathfrak{p}_D \cap \mathfrak{O}_D$

Set $G = \text{Gal}(L/K)$.

$D = \text{Decomposition group} = \{g \in G \mid g(\mathfrak{p}_E) = \mathfrak{p}_E, g(\mathfrak{p}_D) = \mathfrak{p}_D\}$

Stabilizer of \mathfrak{p}_D under G-action
\[E = \text{Inertia group } = \{ \sigma \in D \mid \sigma \text{ acts trivially on } \mathbb{Q}/\mathbb{Z} \} \]

Then \(L = \text{fixed field } \frac{E}{D} = \{ x \in L \mid \sigma(x) = x \text{ for all } \sigma \in E \} \)

\(L_D = \text{fixed field of } D \).

Notation: \((\mathfrak{p})_E = \text{thing fixed by } E\)

\((\mathfrak{p}_L)_E = \mathfrak{p}_L \cap L_E = \mathfrak{p}_{LE} \text{ and } \mathfrak{p}_E = \mathfrak{p}_D \cap \mathfrak{p}_{LE}\)

Thm: (i) \((\mathfrak{p}_D)_{L_D} \text{ is non-split in } L_D\)

\([\text{i.e., } \mathfrak{p}_D \text{ is the only prime above } \mathfrak{p}_D]\]

\(L \uparrow_{L_D} \mathfrak{p}_D \)

(ii) \(\mathfrak{p}_D \text{ over } \mathfrak{p}_D \text{ has ram index } = e \text{ internal degree } = f \)

(iii) \(\mathfrak{p}_D \text{ over } \mathfrak{p}_D \text{ has ram index } = 1 \text{ internal deg } = 1 \)

\(G_D = \text{cl} \mathfrak{p}_D, \beta \text{ breaks up into } r \text{ pieces (same as in } L) \)

\(\text{unramified, with residue field } (\cong \mathbb{Q}_L/\mathfrak{p}_D \cong \mathbb{Q}_K/\beta) \)

\(\text{unchanged. Also } [L_D : K] = r. \text{ That is, } \beta \text{ is totally split in } L_D.\)

Proof: (i) \(\text{Gal}(L/L_D) = D \text{ acts transitively on the primes above } \mathfrak{p}_D \text{ yet fixes } \mathfrak{p}_D. \)

L/K is normal, hence so is \(L/L_D. \)
As \(L/K \) is normal, we have

\[n = [L:K] = \sum e_i f_i = e f r. \]

Since \(|D| = |G|\), we have \(|D| = e f r\). Thus, by (ii) \(\beta \) must split into \(L/D \) factors in \(G_L \).

The fund. evident forces

\[e'' = f'' = 1. \]

By mult. of ram index + inertial deg,

get \(e' = e \) and \(f' = f \).

Consider the residue fields

\[
K(\sigma) = \frac{G_L}{\sigma g}
\]

\[
K(\beta) = \frac{G_K}{\beta}
\]

Prop: This extension is normal, and \(D \rightarrow \text{Gal}(K(\sigma)/K(\beta)) \) is surjective.

Proof: By the above, \(K(\beta) \cong K(\sigma_0) \) so we might as well assume \(L_D = K \Rightarrow D = G \).

Blah, blah, ...