Lecture 30: Quadratic Forms I

Throughout, K is a field of char $\neq 2$.

Quadratic Space: a finite dim'l vector space V over K with a symmetric bilinear form $B: V \times V \to K$.

\[B(v, w) = \sum v_i w_i \]

\[B(kv_1 + v_2, w) = k B(v_1, w) + B(v_2, w) \]

Ex: $V = \mathbb{R}^n$ and $B(v, w) = \sum v_i w_i$

Ex: $V = \mathbb{Q}^2$ \quad $B(v, w) = 8v_1 w_1 + v_1 w_2 + v_2 w_1 - 3v_2 w_2$

Quadratic Form: $g: V \to K$ given by $g(v) = B(v, v)$

Note: g actually determines B via

\[B(v, w) = \frac{1}{2} (g(v + w) - g(v) - g(w)) \]

Ex:

1. $g = v_1^2 + \ldots + v_n^2$
2. $g = 8v_1^2 + 2v_1 v_2 - 3v_2^2$

Note: $g(v)$ can be negative, or even 0, e.g. in case 2

$g((0, 1)) = -3$ and $g((1, 2)) = 8 + 4 - 3.2^2 = 0$

B is determined by its Gramm matrix $G = (B(e_i, e_j))$

with respect to any basis $B = \{e_1, \ldots, e_n\}$ of V.

In particular, if $x, y \in V$, then
column vector cor to \(w \) in basis \(B \)

\[
B(v, w) = [v]_B^T C [w]_B = (a_1, a_2, \ldots, a_n) \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}
\]

\[
= \sum_{i,j} a_i B(e_i, e_j) b_j = B(v, w) \quad \text{as} \quad v = \sum a_i e_i \\
\text{w} = \sum b_i e_i
\]

If \(B' \) is another basis of \(B \), then

\[G_{B'} = C^T G_B C \quad \text{where} \quad C = \begin{bmatrix} \text{Input} \B' \\ \text{Output} B \end{bmatrix} \]

\underline{Discriminant:} \(\det G_B \), well-defined up to mult by \((k^*)^2\).

\[\begin{align*}
\text{Ex:} & \quad \text{\(G = \text{Id} = (1,0) \) so \(\det = 1 \)} \\
\text{\(G = (8,1) \) so \(\det = -25 \equiv -1 \mod (k^*)^2 \)}
\end{align*} \]

While the only cond. on \(G \) that \(x^T G y \) define a bilinear form is that \(G^T = G \), we'll show:

\[(V, B) \text{ a quad space. Then } \exists \text{ a basis } B \text{ for } V \text{ where } G_B \text{ is diagonal, i.e. } g(v) = \sum q_i v_i^2. \]

\[\text{Ex2: Take } e_1 = (0,1). \text{ If } G \text{ is to be diagonal, then need } B(e_1, e_2) = 0 \iff w_1 - 3w_2 = 0 \text{ where } e_2 = (w_1, w_2) \text{ so take } e_2 = (3,1). \text{ Then } G = \begin{pmatrix} -3 & 0 \\ 0 & 7 \end{pmatrix} \]

(c.f. Gramm-Schmidt)
Def: For a subset W of V, let

$$W^+ = \{ v \in V \mid B(v, w) = 0 \text{ for all } w \in W \}$$

If $v \in V$ has $B(v, v) \neq 0$, then $V = \langle v \rangle \oplus \{ v \}^+$. Since

$$\dim \{ v \}^+ = \dim V - 1 \text{ as } \{ v \}^+ = \ker (v^T C)$$

1×n matrix

Pf of Thm: By induction, we find an orthogonal direct sum

$$V = \langle e_1 \rangle \oplus \langle e_2 \rangle \oplus \langle e_3 \rangle \cdots \oplus \langle e_k \rangle \oplus W$$

where $g(w) = 0$ for all $w \in W$. Since g determines B, it follows that $B(w_1, w_2) = 0$ for all $w_1, w_2 \in W$. So completing $\{ e_1, \ldots, e_k \}$ to a basis of V using elements of W gives the needed basis.

Def: B is nonsingular if every $v \neq 0$ in V has some $w \in W$ with $B(v, w) \neq 0$.

Equivalent formulations:

1. $V^L = \mathbb{R}^k$.

2. $V \rightarrow V^*$ is an isomorphism $V \rightarrow B(v, \cdot)$

3. $\det C \neq 0$.

Always have $V = V^+ \oplus W$ where $B|_W$ is nonsingular.
Prop: If \(B \) is non-singular, then for every subspace \(W \)

1. \((W^+)\) = \(W \)
2. \(\dim W + \dim W^\perp = \dim V \)

Note: Need not have \(V = W \oplus W^+ \) as sometimes \(W \cap W^+ \neq \{0\} \), e.g. \(w \neq 0 \) in \(W \) with \(g(w) = 0 \).

Pf: HW.

Classification of non-singular quad forms, up to isometry:

- **\(K = \mathbb{C} \):** only one, namely example (1).
- **\(K = \mathbb{R} \):** there are \(\dim V \) of them, namely

 \[B_k = x_1^2 + \cdots + x_k^2 - (x_{k+1}^2 + \cdots + x_n^2). \]

 Signature = \# pos - \# neg

 = \(2k - n \)

Pf: Can choose a basis \(\{e_1, e_2, \ldots, e_n\} \) where

\(G = \text{diag}(d_1, \ldots, d_n). \) Replacing \(e_i \) with \(\lambda e_i \) changes \(d_i \) to \(\lambda^2 d_i. \)

Things are more complicated with \(K = \mathbb{Q} \).

E.g. in example 2, \(G = \begin{pmatrix} 8 & 1 \\ 1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 \\ 0 & 75 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \)

In fact, \(G \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \)

as if \(C = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \) then \(C^2 \begin{pmatrix} -3 & 0 \\ 0 & 3 \end{pmatrix} C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \)

On the other hand, \(x_1^2 - 3x_2^2 \) is really different than \(x_1^2 - x_2^2 \) because of the disc...