Math 530: Problem Set 7

Due date: In class on Wednesday, April 8.
Course Web Page: http://dunfield.info/530

1. In this problem, you’ll consider the connection between the discriminant and the degree of a number field.
 (a) Show that the only number field \(K \) with \(|\Delta_K| = 1\) is \(\mathbb{Q} \). An immediate consequence is that for any number field \(K \neq \mathbb{Q} \) there is some rational prime that ramifies in \(\mathcal{O}_K \).
 (b) Show that \(|\Delta_K| \to \infty \) as \([K : \mathbb{Q}] \to \infty\).

2. Let \(K \) be a number field and \(a \subset \mathcal{O}_K \) an ideal.
 (a) Prove there exists a finite extension \(L \) of \(K \) so that \(a\mathcal{O}_L \) is principle.
 (b) Does there always exists a finite extension \(L \) in which every ideal of \(\mathcal{O}_K \) becomes principle in \(\mathcal{O}_L \)? Prove your answer.

3. For a number field \(K \), the order of the ideal class group is called the class number and usually denoted \(h \). Show that the quadratic fields with discriminant 5, 8, 12, \(-3\), \(-4\), \(-7\), \(-8\), \(-11\) have class number 1.

4. Show that the class groups of \(\mathbb{Q}(\sqrt{10}) \) and \(\mathbb{Q}(\sqrt{-10}) \) are both \(\mathbb{Z}/2\mathbb{Z} \).

5. Compute the class group of \(\mathbb{Q}(\sqrt[3]{7}) \).

6. Let \(K \) be a totally real number field, i.e. the image of every embedding \(K \to \mathbb{C} \) is contained in \(\mathbb{R} \). Let \(T \) be a proper nonempty subset of the set of embeddings \(\tau: K \to \mathbb{R} \). Prove there exists a unit \(\epsilon \in \mathcal{O}_K^\times \) satisfying \(0 < \tau(\epsilon) < 1 \) for \(\tau \in T \) and \(\tau(\epsilon) > 1 \) for \(\tau \notin T \).
 Hint: Apply Minowski’s lattice point theorem to the image of the unit lattice in the trace-zero subspace.