Lecture 7: Applications of \(\pi_1 \)

Last time: \(\text{Thm } \pi_1 S^1 = \mathbb{Z}, \quad \pi_1(\infty) = \text{FreeGroup}(a,b) \)

[Soon will give Van Kampen's Thm, let us compute \(\pi_1 \).]

Today:

Fund Thm of Algebra: Every non-constant poly \(p(z) \in \mathbb{C}[z] \) has a root in \(\mathbb{C} \).

Brouwer Fixed Point Thm: For every cont. map \(h : D^2 \to D^2 \), there is an \(x \in D^2 \) with \(f(x) = x \).

Induced maps: \(h : (X,x_0) \to (Y,y_0) \) gives \(h_* : \pi_1(X,x_0) \to \pi_1(Y,y_0) \) via \([f] \longrightarrow [h \circ f] \).

Ex. \(h : S^1 \longrightarrow S^1 \)

\(Z \longrightarrow \mathbb{Z}^2 \)

\(b \quad y_0 \quad \text{Then} \)

\(h_* : \pi_1(S',y_0) \to \pi_1(S',x_0) \)

\(\langle a \rangle \quad b \longrightarrow a^2 \)

\(h_* \) is a group homomorphism.
Claim: There does not exist \(r: D^2 \rightarrow S' \) with \(r|_{S'} = \text{id}_{S'} \). Hence an \(r \) no exists to \(S' \).

\[r|_{S'} = \text{id}_{S'} \]

\[f(x) = t(x - h(x)) + x \text{ where } t \geq 0 \]

Continuity. [\(F \) is continuous, \(F(0) = 0 \).]

Picture at left. Write \(r \) is

\[f: [0,1] \rightarrow D^2 \text{ has no root.} \]

\[f(0) = 0 \text{ and } f(1) = 1 \]

\[g: [0,1] \rightarrow D^2 \text{ has no root.} \]

\[g(0) = 0 \text{ and } g(1) = 1 \]
Proof 1: Consider the map $S^1 \to S^1$ which is the identity. By assumption, this extends to a map $D^2 \to S^1$. By H.W., we know that must thus be trivial in $\pi_1 S^1$, a contradiction since it generates $\pi_1 S^1 = \mathbb{Z}$.

Proof 2: The map $\tilde{r}_* : \pi_1(D^2, 1) \to \pi_1(S^1, 1)$ has trivial image, since $\tilde{r} = 0$. If $f : [0, 1] \to S^1$ given by $s \mapsto e^{-2\pi si}$, then $\tilde{r}_*([f]) = [\text{id} \circ f] = [f]$ which generates $\pi_1(S^1, 1)$, a contradiction.

Proof of the F.T.A.: Let $p(z) = z^n + a_{n-1} z^{n-1} + \ldots + a_0$ be any polynomial. Let $S^1_r = \{ z \in \mathbb{C} \mid |z| = r \}$, $Y = \mathbb{C} \setminus \{0\}$. For r large we have $f_r : S^1_r \to Y$ given by $f_r = p|_{S^1_r}$.

\[\begin{array}{ccc}
S^1 & \xrightarrow{f_r} & Y
\end{array}\]
Claim 1: \(\pi_1 Y = \mathbb{Z} \), where by winding number.

Claim 2: The map \(\pi_1(S^1_r) \to \pi_1(Y) \) is mult by \(n \).

[Argue claim 1 is plausible, as is claim 2 if you consider \(a_k = 0 \).]

Assume \(p \) has no roots. Then

\[
\begin{array}{ccc}
S_r^1 & \xleftarrow{i} & C \\
\downarrow{f_r} & & \downarrow{p} \\
Y & \xrightarrow{=} & Y
\end{array}
\]

and so

\[
\pi_1(S^1_r) \xrightarrow{i_*} \pi_1(C) \xrightarrow{p_*} \pi_1(Y)
\]

Note that \(p_* \circ i_* = f_{r_*} \), but the first is the \(0 \) map and the other mult by \(n \). Thus \(n = 0 \) on \(p \) is constant.

Formalization: Consider \(f_r : I \to S^1_r \) given by

\[
f_r(s) = \frac{p(re^{-2\pi si})/p(r)}{|p(re^{-2\pi si})/p(r)|} \quad \text{which makes sense if } p \text{ has no zeros.}
\]

This is a loop at \(I \), and equal to \(0 \) in \(\pi_1 S^1_r \) (take \(r \to 0 \)).

O.T.O.H., when \(r \) is large, see that \([f] = n [\text{gen}] \).