Lecture 17: Classifying Covering Spaces

Last time:

Theorem: Covering spaces of a path conn, loe. path
conn space \(X \) are isomorphic via a \(f \) taking \(\tilde{x}_1 \) to \(\tilde{x}_2 \)
iff
\[P_1 \left(\pi_1 \left(\tilde{x}_1, \tilde{x}_1 \right) \right) = P_2 \left(\pi_1 \left(\tilde{x}_2, \tilde{x}_2 \right) \right) \]

Mention survey results

Theorem: \(X \) path conn, loe. path conn, S.L.S.C.

\[\left\{ \text{isom. classes of} \right\} \xleftrightarrow{\text{bijection}} \text{Subgroups of} \pi_1 \left(X, x_0 \right) \]

Note: The L.H.S. is classes of covers w/ choice of \(\tilde{x}_0 \) in \(p^{-1}(x_0) \)
\[\begin{split}
\pi_1(\tilde{X}, \tilde{x_0}) & \ni b \text{ but not } a \\
\pi_1(\tilde{X}, \tilde{x_1}) & \ni a \text{ but not } b \\
\text{Notice that } \pi_1(\tilde{X}, \tilde{x_0}) & \text{ does contain } \pi_1(Y, a \cdot \tilde{y}) \\
& = abab^{-1}a^{-1}, \text{ and in fact} \\
\pi_1(Y) & = \pi_1(\tilde{X}, \tilde{x_0}) \\
& = \pi_1(\tilde{X}, \tilde{x_0})^{-1} \\
\end{split} \]

Then: \(X \) as above, then

\[
\begin{array}{ccc}
\text{iso class of} & \text{bijection} & \text{conj classes of subgps} \\
\text{path cong. classes } \tilde{x} \rightarrow X & & \text{of } \pi_i X \\
\end{array}
\]

Application: Subgps of free gps are free

(Quere class about this.)
Action on fibers:

\[p: \tilde{X} \to X \text{ acts on } \alpha \in \pi_1(X, x_0). \]

Define \(L_\alpha \in \text{Sym}(p^{-1}(x_0)) \) by

\[L_\alpha(\tilde{x}) = \tilde{x}(0) \]

where \(\tilde{x} \) is the lift of \(\alpha \) ending at \(\tilde{x} \).

\[\text{Key: } L_\alpha \cdot \beta = L_\alpha \circ L_\beta \]

\[\Rightarrow L_\alpha \text{ is really a bijection and } L : \pi_1(X, x_0) \to \text{Sym}(p^{-1}(x_0)) \text{ is a homomorphism.} \]

[Query:] \(\text{Stab}(\tilde{x}) = p_*(\pi_1(\tilde{X}, \tilde{x})) \quad L_\alpha(\tilde{x}) \)

[Query:] \(\tilde{X} \) is path \(\iff \) the action is transitive

\[\pi_1(\infty) \to S_3 \]

\[a \mapsto (23) \quad b \mapsto (12) \]

\[L_\alpha(1) = 1 \]

\[L_\alpha(2) = 3 \]

\[L_\alpha(3) = 2 \]
Then: X path conn, i.e. path conn, S.L.S.C.

\[
\begin{align*}
\left\{ \text{Remn. covers of } X \text{ with } n \text{-sheets} \right\} & \leftrightarrow \left\{ L : \pi_i X \to S_n \text{ w/ trans invage mod conj in } S_n \right\} \\
\end{align*}
\]

Recall: Covering trans \(\tilde{X} \xrightarrow{f} X \)
\(p \downarrow \quad \downarrow p \)
\(X \)

\(f \) a homeo with \(p \circ f = p \).

\(G(\tilde{X}) = \text{ group of such } \)
\(\text{(op. is comp. of fns)} \)

\[E \]
\[\begin{array}{c}
\downarrow p \\
\circ \\
\end{array} \\
\]

\[E \] \quad \begin{array}{c}
\begin{array}{c}
\downarrow p \\
\circ \\
\end{array} \\
\end{array}
\]

\[E \] \quad [Query:] \(G(\tilde{X}) = \{ \text{id}_{\tilde{X}} \} \)

\[E \] \quad \begin{array}{c}
\begin{array}{c}
\downarrow p \\
\infty \\
\\end{array} \\
\end{array}
\]

\[E \] \quad \begin{array}{c}
\begin{array}{c}
\\end{array} \\
\end{array}
\]

\[G(\tilde{X}) = \mathbb{Z}/2\mathbb{Z} \]
Def: A connected cover is normal (or regular, or Galois) if \(\forall \tilde{x}_0, \tilde{x}_1 \in \tilde{X} \) with \(p(\tilde{x}_0) = p(\tilde{x}_1) \),

\[\exists f \in G(\tilde{X}) \text{ with } f(\tilde{x}_0) = \tilde{x}_1. \]

[Ex: \(\mathbb{R} \to \mathbb{S}^1, 0 \to \infty \)]

Note: For \(X \) reasonable, such \(f \) exists if

\[n' \quad p_* (\pi_1 (\tilde{X}, \tilde{x}_0)) = p_* (\pi_1 (\tilde{X}, \tilde{x}_1)) \]

\[= \gamma \quad p_* (\pi_1 (\tilde{X}, \tilde{x}_1)) \gamma'^{-1} \]

Thus: \(X \) path conn., loc. path conn., S.L.S.C.

A connected cover \(\tilde{X} \to X \) is regular

\[\iff p_* (\pi_1 (\tilde{X}, \tilde{x}_0)) \text{ is a normal subgroup} \]

of \(\pi_1 (X, x_0) \).

Next time: \(\pi_1 (X) / p_* (\pi_1 \tilde{X}) \cong G(\tilde{X}) \)