Math 525: Problem Set 2

Due date: In class on Wednesday, September 9.
Course Web Page: http://dunfield.info/525
Office hours: Mondays from 11-12, Tuesdays from 11:15 - 12:15, and by appointment. For an appointment, just talk to me after class, or email me at nmd@illinois.edu.
Required Text: Allen Hatcher, *Algebraic Topology*,
http://www.math.cornell.edu/~hatcher/AT/ATpage.html

1. Recall that a topological space X is connected if it is not the disjoint union of two non-empty open sets. The space X is path-connected if every pair of points can be joined by a path.

 (a) Prove directly from the least upper bound property that \mathbb{R} is connected.

 (b) Is every path-connected space is also connected? Prove your answer. (In class, an example was give of a connected space that’s not path-connected)

2. A map $p: \tilde{X} \to X$ is a local homeomorphism if for every $\tilde{x} \in \tilde{X}$ has an open neighborhood U so that $p|_U$ is a homeomorphism.

 (a) Prove that if \tilde{X} is compact and Hausdorff2, then p is a covering map. (While every covering map is a local homeomorphism, the converse isn’t always true as we saw in class.)

 (b) Again assuming \tilde{X} is compact and Hausdorff, prove that for each $x_0 \in X$, the set $p^{-1}(x_0)$ is finite. If X is path connected, show that the number of points in $p^{-1}(x_0)$ is independent of the choice of x_0. The size of $p^{-1}(x_0)$ is called the degree of p.

3. Hatcher, Section 1.3, Problem 1.

N.B. The problems removed from this assignment will appear on the next problem set.

1Revised version of September 8.

2A topological space is Hausdorff if for every two points x and y there are disjoint open sets U and V with $x \in U$ and $y \in V$. A metric space is always Hausdorff, and we will rarely consider spaces which don’t have this property.