Lecture 29: Midterm review — exam tomorrow.

Note: curl not on the exam.

Parameterizations: Ch. 3 Review Exercise #12

Let's start with param the big circle $c_1 : [0, T] \to \mathbb{R}^2$

Start with some param $c_0 : [0, 2\pi] \to \mathbb{R}^2$ of big circle $c_0(t) = (R \cos t, R \sin t)$

$h(0) = 0$
$h(T) = 2\pi$
$h' > 0$

$c_1(t) = (R \cos (\frac{2\pi}{T}) t, R \sin (\frac{2\pi}{T}) t)$
\[C_2 : [0, T] \rightarrow \mathbb{R}^2 \]
\[C_2(t) = (r \cos \left(\frac{8\pi}{T} t \right), r \sin \left(\frac{3\pi}{T} t \right)) \]

\[C : [0, T] \rightarrow \mathbb{R}^2 \]
\[C(t) = C_1(t) + C_2(t) = (R \cos \frac{2\pi t}{T} + r \cos \frac{8\pi t}{T}, R \sin \frac{2\pi t}{T} + r \sin \frac{3\pi t}{T}) \]

Take \(R = 2 \) \(r = 1 \) \(T = 2\pi \)
\[C(t) = (2 \cos t + \cos 4t, 2 \sin t + \sin 4t) \]
\[C'(t) = (-2 \sin t - 4 \sin 4t, 2 \cos t + 4 \cos 4t) \]

\[||C'(t)|| = \sqrt{20 + 16 \cos 3t} \]
min speed: \(2 \)
max speed: \(6 \)

Length = \[\int_0^{2\pi} ||C'(t)|| \, dt \approx 26.72 \]

\[f(x, y) = x^2 \]
\[\int_C f \, ds = \int_0^{2\pi} f(C(t)) ||C'(t)|| \, dt \]
\[= \int_0^{2\pi} (2 \cos t + \cos 4t)^2 \sqrt{20 + 16 \cos 3t} \, dt \approx 78.98 \]

\[F = (y, x) \]
\[\int_C F \cdot ds = \int_0^{2\pi} F(C(t)) \cdot C'(t) \, dt = \int_0^{2\pi} \nabla \phi \cdot \nabla \phi \, dt \]
\[= 0 \quad \text{so} \quad \Phi \text{ is conservative!} \]
Changing speeds

Suppose \(c \) is unit speed, e.g. \(c(t) = (\cos t, \sin t) \).

In this case the \(t \) parameter in \(c(t) \) can equally be viewed as
time or distance from the starting point.

\(h \) is the instructions of the form \(h(t) = \text{milepost} \).

Suppose we want a param of the curve
with non-constant speed, need something with

\[
\begin{align*}
h(0) &= 0 \\
h(1) &= 1 \\
h(2) &= 3 \\
h(\pi) &= 2\pi
\end{align*}
\]

or really anything

that is not a
straight line.
Lagrange multi:

6 m\(^2\) of material
max volume.

\[V = xyz \]

\[A = 2xy + 2xz + 2yz = 6 \quad x, y, z > 0 \]

\[\nabla V = \lambda \nabla A \]

\[(yz, zx, xy) = x^2(y+z, x+z, x+y) \]

\[\Rightarrow \frac{yz}{y+z} = \frac{xz}{x+z} \Rightarrow (x+z)(y^2z = (y+z)x^2 \]

\[yz^2 = xz^2 \Rightarrow x = y \]

Also

\[\frac{yz}{y+z} = \frac{xy}{x+y} \Rightarrow y^2z = xy^2 \Rightarrow x = z \]

So \[x = y = z \] and \[A = 6 \Rightarrow 6x^2 = 6 \Rightarrow x = 1 \]
\[y = 1 \]
\[z = 1 \]

So only one int pt.

Still need to deal with when \[x, y, z \] are small to show there is a global max.
Plane given by $\mathbf{r} \cdot \mathbf{n} = d$

Minimize $f(x,y,z) = x^2 + y^2 + z^2$ on \mathbf{n} given that such a minimum exists.

$\nabla f = \lambda \nabla g = \lambda (a, b, c)$

$(2x, 2y, 2z) \Rightarrow 2x = \lambda a$
$2y = \lambda b$
$2z = \lambda c$

$g = 0 \Rightarrow a(x - x_0) + b(y - y_0) + c(z - z_0) + d = 0$

$\Rightarrow x \frac{x}{2} (a^2 + b^2 + c^2) = -d \Rightarrow \frac{a^2 b^2 c^2}{2}$

$\lambda = \frac{-2d}{a^2 + b^2 + c^2}$

$x = \frac{-ad}{a^2 + b^2 + c^2}$,
$y = \frac{-bd}{a^2 + b^2 + c^2}$

$z = \frac{-cd}{a^2 + b^2 + c^2}$.