Lecture 12: Derivatives (§2.4)

HW: (Due Feb 12) Section 2.4 # 13, 23, 29, 38

Next time: Rest of §2.4; §2.5.

Reminder: First exam is Thursday, Feb 14.

Derivatives:

One var: \(f: \mathbb{R} \to \mathbb{R} \)

The tangent line is given by

\[
g(x_0+h) = f(x_0) + f'(x_0)h + \varepsilon(h)
\]

and this "well approximates" \(f \) in the sense that

\[f(x_0 + h) = f(x_0) + f'(x_0)h + E(h) \]

where \(E(h) \) is small when \(h \) is small.

In particular, \(\lim_{h \to 0} E(h) = 0 \). But that's not enough, consider \(f(x) = |x| \), at \(x_0 = 0 \). Then \(f(h) = f(x_0) + O(h) + E(h) \)

where \(E(h) = |h| \) and \(\lim_{h \to 0} E(h) = 0 \).

[Query: what happens if "\(f'(0) = 1 \)"?]

Correct condition

\[\lim_{h \to 0} \frac{E(h)}{h} = 0 \]

Similarly,

\[
f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + E(h)
\]

where \(\lim_{h \to 0} \frac{E(h)}{h^2} = 0 \).
Notice that (*) leads to
\[\frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + \frac{E(h)}{h} \]
and so taking \(h \to 0 \) makes the connection to what you know clear.

Suppose \(f : \mathbb{R}^2 \to \mathbb{R} \). The derivative of \(f \) at \(x_0 \) is a linear transformation \(L : \mathbb{R}^2 \to \mathbb{R} \) s.t.

\[f(x_0 + \bar{h}) = f(x_0) + L(\bar{h}) + E(\bar{h}) \]

where \(L \) is small.

\[\lim_{h \to 0} \frac{E(h)}{\|h\|} = 0. \]

[Same works for any function \(f : \mathbb{R}^n \to \mathbb{R}^m \).]

\(L \) is given by a matrix of size \([a \ b] \) (a b)

e.g. \(h = (h_1, h_2) \) then

\[f(x_0 + \bar{h}) = f(x_0) + (a \ b) \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + E(\bar{h}) \]

\[= f(x_0) + ah_1 + bh_2 + E(\bar{h}) \]

To solve for \(a \), let's take \(\bar{h} = (h_1, 0) \)

\[f(x_0 + (h_1, 0)) = f(x_0) + ah_1 + E(h_1) \]

\[f(x_0 + h_1, y_0) \quad \text{so} \quad a = \frac{f(x_0 + h_1, y_0) - f(x_0)}{h_1} - \frac{E(h)}{h_1} \]

where \(x_0 = (x_0, y_0) \)
and

\[a = \lim_{h_1 \to 0} \frac{f(x_0+h_1, y_0) - f(x_0, y_0)}{h_1} \]

which is \(\frac{\partial f}{\partial x} (x_0) \) the partial derivative of \(f \) with respect to \(x \). As \(y_0 \) is fixed this is really just a one-var derivative.

The other entry of the matrix is \(b = \frac{\partial f}{\partial y} (x_0) \).

Ex: \(f(x, y) = x^3 y \sin(xy^2) \)

\[\frac{\partial f}{\partial x} = 3x^2y \sin(xy^2) + x^3y^2 \cos(xy^2) \cdot y^2 \]

\[\frac{\partial f}{\partial y} = x^3 \sin(xy^2) + x^3y \cos(xy^2) \cdot (2xy) \]

\[2xy^2 \cos(xy^2) \]

So we should be able to approximate \(f \) near \(\bar{x}_0 = (1, 1) \) by \(L: \mathbb{R}^2 \to \mathbb{R} \) given by

\[\begin{pmatrix} 3 \sin(1) + \cos(1) & \sin(1) + 2 \cos(1) \end{pmatrix} \begin{pmatrix} x_0 \ 1.92 \end{pmatrix} \]

When \(f: \mathbb{R}^n \to \mathbb{R}^m \) is defined on a ball near \(\bar{x}_0 \), we say it is differentiable there when we can find a linear map \(L: \mathbb{R}^n \to \mathbb{R}^m \) where
\[f(x_0 + h) = f(x_0) + L(h) + E(h) \] where \(\lim_{\|h\| \to 0} \frac{E(h)}{\|h\|} = 0 \).

Where \(L \) is denoted \(Df(x_0) \).

[The matrix for \(L \) is given by partial derivatives as \(\nabla f \).

[describe later. For now let's continue to focus on \(\mathbb{R}^2 \to \mathbb{R} \).]

When is \(f \) differentiable at \(x_0 \)? [Query.] Need \(\frac{\partial f}{\partial x}(x_0) \) and \(\frac{\partial f}{\partial y}(x_0) \) to exist.

But that's not enough, e.g. \(f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases} \)

At \(0 \), both partials are 0, but \(f \) isn't even continuous at \(0 \) [and thus not even dif].

Useful but: \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \) exist and are continuous near \(x_0 \) there \(f \) is differentiable there.

\(\exists x: f(x,y) = x^3y \sin(xy^2) \) is differentiable on all of \(\mathbb{R}^2 \).

Thm: Differentiable functions are continuous.

Continuous means \(f(x_0 + h) = f(x_0) + E(h) \) where \(E(h) \to 0 \) as \(h \to 0 \).

Differentiable means \(f(x_0 + h) = f(x_0) + Df(x_0)h + F(h) \) where \(F(h) \to 0 \) as \(h \to 0 \).

Linear transformations are continuous, the 2nd notion is a refinement of the former.