Lecture 20: Min/Max in action

Last time: \(f: \mathbb{R}^2 \to \mathbb{R} \) with a critical point at \(\vec{x}_0 \)

\[
H = \begin{pmatrix}
\frac{\partial^2 f}{\partial x^2}(\vec{x}_0) & \frac{\partial^2 f}{\partial x \partial y}(\vec{x}_0) \\
\frac{\partial^2 f}{\partial y \partial x}(\vec{x}_0) & \frac{\partial^2 f}{\partial y^2}(\vec{x}_0)
\end{pmatrix}
\]

\(D = \text{det} H \)

a) \(D > 0 \), \(f_{xx}(\vec{x}_0) > 0 \) \(\Rightarrow \) local min

b) \(D > 0 \), \(f_{xx}(\vec{x}_0) < 0 \) \(\Rightarrow \) local max

c) \(D < 0 \) \(\Rightarrow \) saddle

Example: Find distance from the plane \(x - y + 2z = 3 \) to \(\vec{d} \).

\[
z = 3 - x + y
\]

Want to minimize \(f(x,y) = \left(\text{dist from } \left(x,y, \frac{3-x+y}{2} \right) \right)^2 = x^2 + y^2 + \frac{1}{4} \left(3-x+y \right)^2 \)

[The square is just to make the computations easier.]

Critical Points: \(\nabla f = \vec{0} \) (or undefined)

\[
\frac{\partial f}{\partial x} = 2x - \frac{1}{2} (3-x+y) = \frac{5}{2} x - \frac{1}{2} y - \frac{3}{2}
\]

\[
\frac{\partial f}{\partial y} = 2y + \frac{1}{2} (3-x+y) = -\frac{1}{2} x + \frac{5}{2} y + \frac{3}{2}
\]

Solve \(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0 \) \(\iff \)

\[
\begin{align*}
5x - y &= 3 \\
-x + 5y &= -3
\end{align*}
\]

\(\iff \) \(x = \frac{1}{2} \)

\(y = -\frac{1}{2} \)
Since there is only one critical point this must be our minimum, and so the closest point is \((\frac{1}{2}, -\frac{1}{2}, 1)\) at distance \(\sqrt{\frac{3}{2}} \approx 1.2\).

Hey, wouldn't the same reasoning "show" that the maximum distance is also achieved at \((\frac{1}{2}, -\frac{1}{2}, 1)\)?

True, we're missing something. In fact \(f\) has no maximum, as is clear geometrically.

From the picture, it looks like we have a min but clearly we need to think things through more carefully.

One row: May or may not have global extreme values

\[\begin{align*}
\text{no global max} & \quad \text{no global max} \\
\text{or min.} & \quad \text{or min.}
\end{align*}\]

Extreme Value Theorem: \(f\) continuous function on \([a, b] = \{a \leq x \leq b\}\). Then \(f\) has a global min and max.
Addendum: These global min/max occur at either a) a critical pt or b) one of the end pts, e.g. 50.63.

Multi Var: D a subset of \mathbb{R}^2

Bounded: D is contained inside some ball.

Not enough in 1-var, e.g.

$$ (0,1) = \{0 < x < 1\} $$

$$ f(x) = \frac{1}{x} $$

Closed: D is closed if it contains all its boundary points.

$$ \{ \| x \| < 1 \} $$

$$ \{ \| x \| = 1 \} $$

$$ \{(x,y) \mid 0 < x < 1 \} $$

$$ \{(x,y) \mid 0 \leq x \leq 1 \} $$

$$ \{(x,y) \mid 0 \leq y \leq 1 \} $$
Formally: \(D \) is closed if for each point \(\bar{p} \) not in \(D \), there is an \(r > 0 \) such that \(B_r(\bar{p}) \) misses \(D \).

\[
\begin{array}{c}
\text{vs.} \\
\bar{p} = (0, \frac{1}{2})
\end{array}
\]

Extreme value theorem: Suppose \(D \) is a closed and bounded subset of \(\mathbb{R}^n \). If \(f : D \to \mathbb{R} \) is continuous, then \(f \) has global extrema on \(D \), which occur either at:

a) critical points

b) the boundary of \(D \).

Back to problem at hand.

On \(D \) there's one critic pt

\[
D = \{ ||x|| \leq 2 \}
\]

\((\frac{1}{2}, -\frac{1}{2}) \) where \(f = \frac{3}{2} \)

On \(2D \), \(f \geq 4 \). So is the

global min of \(f \) on \(D \).

Outside of \(D \), \(f \geq 4 \) so in fact

\(f \) has a global min on \(\mathbb{R}^2 \) of \(\frac{3}{2} \), achieved

at \((\frac{1}{2}, -\frac{1}{2}) \). Double check: Apply 2nd der. test