Improper integrals: Those where the Fundamental Theorem of Calculus does not directly apply.

\[\int_0^\infty e^{-x} \, dx = \lim_{R \to \infty} \int_0^R e^{-x} \, dx = \lim_{R \to \infty} \left[-e^{-x} \right]_0^R = \lim_{R \to \infty} -e^{-R} + e^0 = 1 \]

Can also look at integrals over the whole x-axis:

\[\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi} \]
Q: How should we define \(\int_{-\infty}^{\infty} f(x) \, dx \)?

Try 1: \(\lim_{R \to \infty} \int_{-R}^{R} f(x) \, dx \)

Not quite right: \(\int_{-\infty}^{\infty} x \, dx = \lim_{R \to \infty} \int_{-R}^{R} x \, dx \)

\[= \lim_{R \to \infty} \left. \frac{x^2}{2} \right|_{-R}^{R} = \lim_{R \to \infty} 0 = 0. \]

This isn't unreasonable, but what about \(\int_{-\infty}^{\infty} x+1 \, dx = \lim_{R \to \infty} \int_{-R}^{R} x+1 \, dx \) ??

Some graph as \(x \), but shifted over to the left,

so answer which does not exist.

Correct: If \(f \) is cont on \((-\infty, \infty)\), we write

\[\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{a} f(x) \, dx + \int_{a}^{\infty} f(x) \, dx \]

for any constant \(a \),

and say \(\int_{-\infty}^{\infty} f(x) \, dx \) converges if and only if both of the Riemann integrals converge.
\[\int_{-\infty}^{\infty} x \, dx = \int_{-\infty}^{0} x \, dx + \int_{0}^{\infty} x \, dx \]

diverges as \(\int_{-\infty}^{0} x \, dx \) does.

Comparison Test: Deciding when \(\int_{a}^{\infty} f(x) \, dx \)
converges, even when we can't explicitly compute it.

\[\int_{0}^{\infty} e^{-x^2} \, dx, \text{ where we don't have a closed } \]
form for \(\int e^{-x^2} \, dx \)

General method: \(f, g \) cont,

\[0 \leq f(x) \leq g(x) \]

for \(x \) in \([a, \infty)\)

Then if \(\int_{a}^{\infty} g(x) \, dx \) converges, so does \(\int_{a}^{\infty} f(x) \, dx \)

clear: \(\text{for a function } h(x) \geq 0, \text{ then } \)

finite area \(\iff \int_{a}^{\infty} h \, dx \) converges

infinite area \(\iff \int_{a}^{\infty} h \, dx \) diverges

means "if and only if"
As the graph of \(f \) lies below that of \(g \), clearly the area under \(f \) is \(\leq \) the area under \(g \). So if the area under \(g \) is finite, so is the area under \(f \).

Similarly: If \(\int_a^\infty f(x) \, dx \) diverges, so does \(\int_a^\infty g(x) \, dx \).

Ex: \(\int_2^\infty e^{-x^2} \, dx \) On \([2, \infty)\) we have \(x \leq x^2 \), so \(e^x \leq e^{x^2} \) so \(e^{-x^2} \leq e^{-x} \).

As \(\int_1^\infty e^{-x} \, dx \) converges, so does \(\int_1^\infty e^{-x^2} \, dx \).

[Can also apply to \(\int_0^\infty e^{-x^2} \, dx \) by noting that this is equal to \(\int_2^\infty e^{-x^2} \, dx + \int_2^{\infty} e^{-x^2} \, dx \).]
Exam: \[\int_{1}^{\infty} \frac{3 + \cos x}{x} \, dx \]

Now \(-1 \leq \cos x \leq 1\), so

\[\frac{2}{x} \leq \frac{3 + \cos x}{x} \leq \frac{4}{x} \]

As \(\int_{1}^{\infty} \frac{2}{x} \, dx \) diverges, so does \(\int_{1}^{\infty} \frac{3 + \cos x}{x} \, dx \).