Math 231 E1H: HW #12

Due date: In class on Wednesday, December 10.

Smith and Minton, Section 9.6: #13, 15, 17.
Hubbard and Hubbard (attached) Section 0.7: #2, 3, 6, 8, 11(a), 13.

Math 231 E1H: Honors Problem Set #4 (Corrected)

Due date: In class on Wednesday, December 10, on separate sheets from HW #12.

1. Recall that a function is *odd* if \(f(-x) = -f(x) \) for all \(x \), and *even* if \(f(-x) = f(x) \) for all \(x \).
 Suppose \(f \) and \(g \) are two functions and set \(h(x) = f(x)g(x) \).

 (a) Suppose \(f \) is odd and \(g \) is even. What can you say about \(h \)?
 (b) Suppose \(f \) and \(g \) are both odd. What can you say about \(h \)?
 (c) Suppose \(f \) and \(g \) are both even. What can you say about \(h \)?

2. Suppose \(f \) is an odd function. Show that for each \(L > 0 \) one has
 \[
 \int_{-L}^{L} f(x) \, dx = 0.
 \]
 Hint: break the integral into two pieces by splitting the interval \([-L, L]\) at 0. Then do a change of variables (\(u \)-substitution) to one of the new integrals to make it look more like the other one.

3. Suppose \(f \) is an even function. Find a relationship between
 \[
 \int_{-L}^{L} f(x) \, dx \quad \text{and} \quad \int_{0}^{L} f(x) \, dx.
 \]
 Justify your answer carefully.

4. Use questions 1 and 2 to prove that if \(f \) is an odd function then its Fourier expansion has no cosine terms (i.e. \(a_k = 0 \) for \(k > 1 \)). What, if anything, can you say about \(a_0 \)?

5. Use the properties that \(e^{a+b} = e^a e^b \) and \(e^{i\theta} = \cos \theta + i \sin \theta \) for a real number \(\theta \) to derive the sum formulas for sine and cosine.