Exercise 0.1. Find the order of 3 modulo 13.

Exercise 0.2. Solve the following.
 a) Let m be a positive integer and let a and b be integers relatively prime to m with $(\exp_m a, \exp_m b) = 1$. Then prove that $\exp_m ab = (\exp_m a)(\exp_m b)$.
 b) Show that the hypothesis $(\exp_m a, \exp_m b) = 1$ cannot be eliminated from (a). What can be said about $(\exp_m ab)$ if $(\exp_m a, \exp_m b) \neq 1$?

Exercise 0.3. Let m be a positive integer and let $d | \phi(m)$ with $d > 0$. Prove or disprove that there exists $a \in \mathbb{Z}$ with $\exp_m a = d$.

Exercise 0.4. Let m be a positive integer and let $a \in \mathbb{Z}$ with $(a, m) = 1$.
 a) Prove that if $a \in \mathbb{Z}$ with $\exp_m a = xy$, with x and y positive integers, then $\exp_m a^x = y$.
 b) Prove that if $\exp_m a = m - 1$, then m is a prime.

Exercise 0.5. Determine the number of incongruent primitive roots modulo 43.

Exercise 0.6. Let p be an odd prime number.
 a) Prove that any primitive root r modulo p is a quadratic non-residue modulo p. Deduce that
 $$r^{(p-1)/2} \equiv -1 \mod p.$$
 b) Prove that there are exactly $\frac{p-1}{2} - \phi(p-1)$ incongruent quadratic non-residues modulo p that are not primitive roots modulo p.

Exercise 0.7. Let p be a prime number. Prove that the product of all incongruent primitive roots modulo p is congruent to $(-1)^{\phi(p-1)}$ modulo p. Deduce that if $p > 3$, then the product of all incongruent primitive roots modulo p is congruent to 1 modulo p.