Exercise 7.2.1

If P, Q are points in the Klein model, the Euclidean line between them
is a line in the Klein model. Since line
segments are also Euclidean, axioms 1 and 2 of Euclid are immediate.

Exercise 7.2.2

Suppose P is a point in the Klein model: let RS be a chord passing
through P.

Then, as a function of the position of a point Q,

\[d_K(P, Q) = \frac{1}{2} \left| \ln \left(C \cdot \frac{QR}{QS} \right) \right| \]

where $C = \frac{PS}{PR}$ is constant.

Now QR, QS vary continuously in the coordinates (in the Cartesian sense) of Q, and
\(\ln(-) \) is continuous, so $d_K(P, Q)$ is continuous in the Cartesian coordinates of Q.

If Q is within (Euclidean) distance ϵ of P, then $QS < \epsilon$, and $QR > RS - \epsilon$, so
\[
\frac{QR}{QS} > \frac{RS - \epsilon}{\epsilon},
\]
which goes to infinity as $\epsilon \to 0^+$. Hence $d_k(P,Q)$ takes on arbitrarily large values as Q varies.

On the other hand, if the distance from P to Q is ϵ, then $QS > PS - \epsilon$,
$QR < PR + \epsilon$, and, taking $\epsilon < \min \left\{ \frac{1}{n} PR, \frac{1}{n} PS \right\}$,
we get
\[
\frac{(PS)(QR)}{(PR)(QS)} < \frac{(PS)(PR + \epsilon)}{(PR)(PS - \epsilon)} < \frac{(PS)(PR + \frac{1}{n} PR)}{(PR)(PS - \frac{1}{n} PS)}
\]
\[
= \frac{(PS)(PR)}{(PR)(PS)} \cdot \frac{1 + \frac{1}{n}}{1 - \frac{1}{n}} = \frac{n + 1}{n - 1} = 1 + \frac{2}{n - 1}.
\]

For n sufficiently large, then,
\[
d_k(P,Q) = \frac{1}{2} \ln \left(\frac{(PS)(QR)}{(PR)(QS)} \right) < \frac{1}{2} \ln \left(1 + \frac{2}{n - 1} \right)
\]
can be made as close to $\frac{1}{2} \ln(1) = 0$ as we like.

So $d_k(P,Q)$ takes on arbitrarily small values.

Since $d_k(P, -)$ is continuous, the Intermediate Value Theorem implies that $d_k(P, -)$ takes on all nonnegative values.
Now define the circle of radius \(r \) around \(P \) by
\[
C = \{ Q \mid \text{dist}_K(P, Q) = r \}.
\]
By the previous paragraph, this is a nonempty set!

Exercise 7.2.3

If \(L, M \) are parallel, the lines \(N \) perpendicular to \(L \) pass through \(\text{pole}(L) \); those perpendicular to \(M \) pass through \(\text{pole}(M) \). Hence a common perpendicular passes through \(\text{pole}(L) \) and \(\text{pole}(M) \). Such a Euclidean line is unique (unless \(\text{pole}(L) = \text{pole}(M) \), in which case the tangents to the endpoints of \(L, M \) agree, showing that \(L = M \)).

The Euclidean line \(\overline{\text{pole}(L)(\text{pole}(M))} \) will
intersect the Klein disk—since it lies between the tangents to the endpoints of M, for example, this follows from Pasch’s Axiom—unless the line equals one of these two tangents, i.e., both poles (of L and M) lie on a single line tangent to the circle. But this happens exactly when the chords L and M share a common endpoint: i.e., the lines are limiting parallels of each other.

Exercise 7.2.4

Suppose $\angle QPT$ is a right angle. Then CB is perpendicular to PA, so PQ passes through the pole of CB. But this means PQ passes through two points (Pole of AB and Pole of CB) that lie on the same line (the line through B tangent to the circle), so PQ equals that line—and since the line is tangent to the circle, PQ contains no points in the Klein model, a contradiction.
It remains to show that the angle of parallelism cannot be greater than a right angle.

Suppose it is. Construct a line through P perpendicular to PQ. Since the angle on the side of QPT is less than \(\angle QPT \), and \(\overline{CB} \) is a limiting parallel to \(\overline{AB} \), the line \(\ell \) will intersect \(\overline{AB} \). On the other hand, line \(\overline{PQ} \) intersects \(\ell \) and \(\ell' \) both perpendicularly, and Euclid's Prop. 5-28 then implies \(\ell \) and \(\ell' \) are parallel, contradicting the previous sentence. So the angle of parallelism cannot be greater than a right angle.